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Abstract

State-of-the-art generative audio models rely on text prompting mechanisms as a primary form

of interaction with users. While text prompting can be a powerful supplement to more gestural in-

terfaces, a sound is worth more than a thousand words: sonic structures like a syncopated rhythm

or the timbral morphology of a moving texture are hard to describe in text. They can be more

easily described through a sonic gesture. I describe two technical research works exploring gen-

erative audio modeling with gestural and interactive control mechanisms: VampNet (via masked

acoustic token modeling) and Sketch2Sound (via fine-grained interpretable control signals). I in-

troduce the neural tape loop: a co-creative generative musical meta-instrument for experimental

music and sound art designed and developed using practice-based research methods. I propose

new interactive sound manipulation techniques based on the affordances of masked acoustic token

models, and illustrate the musical capabilities of these techniques through four original creative

works (a composed improvisation, two fixed media electroacoustic pieces, and a multichannel

interactive sound installation) made in collaboration with sound artists, composers, and instrumen-

talists. Finally, I reflect on how engaging in a mixed creative and technical research practice can

be a catalyst for culturally situated and artist-centered innovation and advancement in generative

musical instrument design.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The tech industry today sees the expressive power of generative neural nets as a way to build a uni-

versal musical instrument: a system they claim can be used by anyone to make music, regardless

of their musical background or level of expertise [1]. This line of thinking has impacted consid-

erably upon the design and engineering choices made by scientists working on generative AI for

music and sound design. Most of the work has focused on systems for “novice” or casual creators,

primarily operated using a text-prompted interface.

While text prompting can be a powerful supplement to more gestural interfaces, an interface

based solely on text prompts constrains the space of compositional decisions available to an artist

to a fixed lattice dictated by what is possible to describe affordably in text. A sound is worth more

than a thousand words: musical structures like a syncopated rhythm or the timbral morphology

of a moving texture are hard to describe in text. They can be more easily described through a sonic

gesture [2, 3].

For instance, a form of sonic guidance (like a vocal imitation) can effortlessly convey the inef-

fable temporal specificities, contours, and inflections of sound. The human voice is a gestural sonic

instrument [4]: it allows us to realize sounds without having to perform any symbolic abstraction

(i.e., putting a sound into words) beforehand. When humans communicate audio concepts to other

people (rather than software), they typically combine descriptive language and vocal imitation [5,

6, 7]. In doing so, one approximates the audio by mapping the pitch, timbre, and temporal proper-

ties of the sound to those of the voice. This is a more natural method than describing the evolution

of pitch, timing, and timbre via pure text descriptions [5] and recent work has shown its utility

for query-by-example search of audio databases [8, 9]. Our voice is built into our bodies, and
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advanced vocal techniques (e.g., speaking, singing) are developed continually in life, making the

voice a promising interface for expressively creating sounds with generative models – one with a

low floor (it is easy for a novice to get started), high ceiling (with work, virtuosity is possible),

and wide walls (a wide range of possible outcomes at any skill level) [10]. While the voice is a

powerful device accessible to most musicians and non-musicians, sonic prompts for a generative

model can also be guided by other means of sound production: a person may clap, tap a drum beat

on a desk, manipulate physical sound objects (e.g. jingling keys), or play a musical instrument.

For instrumentalists, the space of possible sonic gestures to guide a generative model is further

expanded, as the instrumentalist has access to the sonic affordances offered by their instrument.

Through their instruments, musicians can convey controlled and specific sonic gestures, which can

be used as input material to have a controllable and expressive interaction with a generative model.

If sonic/vocal guidance is a promising mode of interaction for a generative model, what kinds

of sounds should our model make in response to our sonic gestures? In a sound artist’s creative

practice, the raw sound materials used in composition or improvisation (e.g. field recordings,

instrument ’one-shots’, found sounds, etc.) can be as personal and fundamental to the artist’s voice

and creative intent as the skills and techniques the artist chooses to employ. It would thus be

undesirable for sound artists to be limited to using the sounds of a generic pretrained model trained

on “stock sounds” or all-encompassing sounds as material. If every artist used the same generative

model checkpoint to create sonic artworks, all of their creative outputs would contain traces of that

checkpoint’s aesthetic qualities. This is undesirable for sound artists, who likely desire to convey

their own stories and styles in their works by using and manipulating their own found and created

sound materials. Esling and Devis [11] make the analogy that the standardization of generative

music as creative practice would resemble a “genetic drift” in creativity, negatively impacting the

diversity and variance of creative practices and artifacts. Instead, sound artists should be able to

provide their own sound palette: a small to medium-sized collection (ranging from a couple of

minutes to a couple of hours) of sound recordings that we can use to fine-tune the “base” generative

model; any generated outputs following this fine-tuning process would match the sonic qualities
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of the provided sound palette.

My goal is to build artist-centered human-AI co-creation systems for creative expression in the

sound arts. To do so, I had to advance the state of the art in areas relating to interactive music

generation, controllable and interpretable audio generation, and human-computer interaction for

human-AI co-creation interface design. In the work for this dissertation, I developed a set of

machine learning systems that (1) enable more gestural and controllable interactions than text-

based generative models , (2) support a wider sonic palette and longer-term structure than

a realtime sound generation systems (like RAVE [12]) while still being (3) fast enough to run

interactively and able to (4) fine-tune to an end-user’s sound palette

An important question to ask is: who is this instrument made for? Setting out to build a uni-

versal musical instrument is an ill-formed goal; music is not a homogeneous blob, but an umbrella

term encompassing countless evolving communities of artistic practice, each with a unique set of

styles, techniques, and aesthetic values[13]. Ultimately, there is no universal musical instrument,

but rather an ecosystem of instruments, all part of a dynamic ecology of affordances situated in

their respective communities of practice [14]. The technical contributions in this dissertation were

constantly informed by and fed back into my own background and creative practice: I am a com-

puter musician, guitarist, and improviser, with a background in the traditions of Latin American,

Jazz, Experimental and Improvised Music. Each of the technical contributions in this dissertation

was followed by a period of creative practice to explore the creative possibilities of the current

system as-it-was, with the objective of reflecting on the possible next steps, prioritizing the tech-

nical challenges that were more likely to lead to an improved long-term creative interaction. This

process constituted a form of practice-based research [15], where each technical advancement was

followed by a period of creative practice, exploring the creative affordances of the system in its

current state and figuring out a new technical research direction to further advance my goal of

building a generative musical instrument for creative sonic expression.

In addition to my technical contributions in the field of generative modeling for audio, this dis-

sertation introduces a set of original creative works, including generative sound installations, fixed
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media musical pieces, and live improvisations with a generative model. These uncover and draw

on the musical affordances and interactions that could only be made possible by the technical con-

tributions described above. By reflecting on my compositions, performances, and collaborations

with other artists, I show how engaging in creative practice led to the discovery of new musi-

cal affordances implicit in a generative model, reusable design guidelines for building co-creative

musicmaking systems, and the development of follow-up technical innovations.

1.2 Contributions

• Contributions to interactive music generation (Chapter 2) The first audio-conditioned

latent generative music model fast enough for interactive (non-realtime) generation. With it,

I designed prompting strategies to perform tasks that previous methods (autoregressive) were

not designed to do: sound inpainting, extreme (data) compression, and creating rhythmic and

timbral variations of an input sound recording by leveraging beat and onset tracking methods,

making it an expressive and interactive looping and sampling tool. This work was published

at the ISMIR 2023 conference under the name VampNet [16].

• Contributions to controllable and interpretable audio generation (Chapter 3) a con-

trollable (interactive, non-realtime) sound generation system capable of generating sounds

from interpretable, fine-grained time-varying control signals that can be easily extracted

from any audio signal (e.g. loudness envelope, pitch contour, brightness), as well as text

prompts. By leveraging these control signals as conditioning, this system is able to gener-

ate arbitrary sounds from sonic imitations and sketchlike control curves, like low-frequency

oscillators (LFOs). This work was published the ICASSP 2025 conference under the name

Sketch2Sound [17].

• Contributions to human-AI co-creation for music (Chapter 4)

– a generative musical meta-instrument designed via practice-based research methods,

leveraging one of the generative sound systems mentioned above to allow an artist

to create musically meaningful timbral, rhythmic, and structural transformations of a
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recorded loop.

– a practice-based research account discussing the design of the proposed meta-instrument,

introducing a new set of musical techniques based on the affordances of masked acous-

tic token models. Through the discussion of previous performances, sound installa-

tions, and artist collaborations, I propose reusable design and compositional guidelines

for building and playing with generative AI music co-creation systems.

1.3 Broader Impact

Mainstream music AI products (e.g. Suno 1, Udio 2, Google MusicFX DJ 3, Beatoven 4) fa-

vor consumer-centric casual creation interfaces that promise accessible “anyone-can-make-music”

musicmaking by facilitating long-form compositions with exclusively high-level interactions (e.g.

a high-level text prompt like “sunny, dreamy pop-funk-orchestral-gregorian chant love song”).

Instead, I aim to contribute to the discourse of a community of artists building their own gen-

erative models and instruments for musicmaking [18, 19, 20, 21]. Much like the lineage of non-

generative digital musical instruments before them, many of these instruments are motivated by

the artist/researcher’s own artistic practice .

The design choices I’ve made for my proposed musical instrument reflect a more grounded,

artist-centric interface, offering “lower-level” gestural control by letting users manipulate the mo-

mentary acoustic features of a sound produced by a generative model of a sound palette. For

example, the proposed time-varying control signals would allow an artist to control the immediate

(i.e., ten-millisecond-level) energy and brightness of a generated stream of rain sounds from field

recordings recorded by the artist.

By giving artists the ability to fine-tune their own model on a sound palette, I am giving the

artist the power to participate in the modelmaking process. Pioneering AI artists Holly Herndon

and Mat Dryhurst [22] assert that “the AI model is the artwork; the data is the artwork; the protocol
1suno.ai
2https://www.udio.com/
3https://aitestkitchen.withgoogle.com/tools/music-fx-dj
4https://www.beatoven.ai/
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coordinating it all is the artwork”, and so giving an artist the ability to choose their own sound

palette further asserts the artists ownership over the artwork being created.

My technical contributions, which make state-of-the-art generative audio models faster and

more controllable, will also have an impact in other creative industries in the sound arts, like Foley

sound design. Foley sound is a skilled and gestural performance art: performing a sound scene with

sound-making objects and instruments (instead of arranging pre-recorded samples post hoc) allows

sound artists to create fluent and temporally aligned sounds with a gestural touch [17]. Giving a

Foley artist the opportunity to control a pre-recorded sound library with vocal gestures and text

references could foster new techniques for Foley sound, especially in cases where a Foley stage

may not be available, and arranging sounds from a pre-recorded library may be the only choice.

My work will be of interest to researchers in generative modelling for audio (i.e. speech, music,

sound fx), human-AI co-creative interfaces and digital musical instruments. The contributions

proposed advance the state-of-the-art in generative modelling, making the existing generation of

two-stage generative sound models faster and more controllable, opening up new meaningful ways

to interact with powerful sound synthesis systems. From a human-computer interaction standpoint,

this work will help obtain a better understanding of the role generative models play in the context

of music performance, as well as help machine learning researchers learn how to design generative

music models that create artist-centric experiences.

1.4 Background

This section provides an overview of related state-of-the-art research in the academic fields explor-

ing human-AI co-creation interfaces and systems, digital musical instrument design, and control-

lable sound generation techniques with generative deep learning. This grounds how this disserta-

tion advances each field of study.
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1.4.1 Human-AI Interfaces for Music Creation

Recent research studying human-computer interaction (HCI) for human-AI music co-creation

highlights that current human-AI interface layers for deep generative models fall short when it

comes to giving performers a sense of agency, control, and authorship [23, 24]. To date, most of

the work addressing these issues has focused on building systems targeted towards casual or novice

music creators [24, 25]. Few studies involve practicing musicians [26], often only at the end of a

study, for evaluative purposes.

This is because deep learning is often presented as a technology that can democratize mu-

sic567 [27] – that is, it allows non-experts to engage in music-making and create sophisticated

musical products. Large tech corporations and startups (who are the primary drivers of new AI

music co-creation tools) aim to make “democratized” technology due to it’s massively scalable

business model [28]. Morreale et al. [29] notes that we should be cautious of these calls for de-

mocratization: the main problem why a person who wants to make music is not able to is not

because our current instrument technology is inefficient, or that instruments take a long time to

master. Rather, there are deeper intersecting reasons as to why someone may want to engage in

music but is unable to, such as “exclusion because of socioeconomic resources, underfunded arts

in schools, time poverty driven by capitalist forces, and exclusion from music-making communi-

ties because of gender, disability, body size, musical tastes... just to name a few” [29]. Sturm et

al. note that “democratized” AI-music creation services are “difficult to distinguish from a form

of technologically-mediated deskilling” [28, 30], as they reduce users’ needs for musical compe-

tence, expertise, and or/education, all of which are recognized barriers to access in musicmaking.

McPherson et al. [13] argue that making an instrument for “anyone to make music“ is a rather mis-

construed goal, as “music is not one homogeneous entity but rather an umbrella term encompassing

a huge variety of genres, styles, and techniques.”.

Ultimately, there is no ideal instrument that will be right for everyone, but rather an ideal

5https://www.rollingstone.com/music/music-features/suno-ai-chatgpt-for-music-1234982307/
6https://www.theguardian.com/technology/2024/apr/13/ai-generated-music-app-suno-ai-impact-musicians-music-rights
7https://www.forbes.com/sites/davidhenkin/2023/12/05/orchestrating-the-future-ai-in-the-music-industry/
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ecosystem of many musical instruments, each of them with a different set of affordances, occu-

pying their own acoustic niche [31] designed to serve the artistic needs of a particular aesthetic

and sociocultural context. So what should guide our design and technical goals when building

interactive generative musicmaking systems?

1.4.2 Digital Musical Instrument Design

As designers of a new generation of co-creative AI musical instruments, our design principles can

be helpfully guided by the conceptual frameworks discussing the nature of musical instruments

and their contexts [32].

Rodger et al.[14] warn us that traditional HCI design methodologies aren’t a perfect fit when

thinking of musical instrument design. Instead, they suggest us not to think of musical instruments

as “discrete, self-subsisting objects” or physical/software devices for making sound, but rather

as part of a dynamic ecology of affordances situated in their respective cultural, historical and

conceptual contexts [33, 32]. Thus, any design studies carried out for an instrument will be most

successful if they are to be situated within a cultural and artistic/stylistic context throughout the

design process [34, 35, 36].

The past half-century has seen the emergence and growth of a community of digital musical

instrument (DMI) makers and performers, leading to the rise of academic communities focused on

Computer Music [37] in the 1970s and New Interfaces for Musical Expression (NIME) in the early

2000s [38]. This community of practice stands out, as they have nurtured a relatively new tradi-

tion that entangles instrument-making and creative musical practice together [39]. Contemporary

interfaces for engaging in the practice of musicking [40] have both challenged the notion of what

a musical instrument is [33, 41] and blurred the line between composition and performance [42].

While working on a digital musical instrument, a DMI maker may play the roles of instrument-

builder, composer and performer all together [39], engaging in an iterative loop of design time and

play time [43], where each play session informs what the direction should be for the next round of

design. This process encourages the instrument builder to stop and play with an instrument as-is to
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evaluate its current functions and aesthetic qualities before committing to another round of design

and building.

Engaging in this iterative design-play process lends itself well to practice-based research meth-

ods [44, 45, 46]. Practice-based research methods stem from research in the arts and humanities,

aiming to capture the complex, non-linear processes inherent to artistic practice [47].

Since before the establishment of the NIME conference itself, NIME research practices in

NIMEs covered a wide variety of disciplines [48], from technical reports and system designs to

musicological, historical, and critical perspectives on new musical instruments and the music made

with them. However, Gurevich [48] noticed that in the 2010s, NIME papers skewed heavily more

toward technical reports and scientific contributions, highlighting the implicit increasing pressure

for every NIME publication to contain quantifiable outcomes and “scientific contributions”.

Being able to offer a diversity of research perspectives is arguably a potential strength of the

NIME community, and Gurevich calls for people engaged in practice-based research (PBR) to

“examine its goals, expectations, and parameters with the aim of clarifying what could constitute

legitimacy within the PBR community”. A recent publication by Pelinski, McPherson and Fiebrink

calls for more Technical Practice Research [45] in the field of NIME, arguing that there is a lot of

knowledge to be gained from the “messy, non-linear unfoldings, reflexive discomfort and nuance”

[49, 45] of practice as opposed to the linear design narratives often conveyed in traditional scientific

research.

In Chapter 4, I further discuss the role of musical practice in musical instrument design re-

search. Chapter 5 is a practice-based research account of my design of a generative musical

meta-instrument, along with several creative works to accompany it. In Chapter 5, I propose a

set of techniques for manipulating acoustic tokens to achieve different musical outcomes, as well

as propose design guidelines for building and playing generative AI music co-creation systems for

practicing musicians.
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Figure 1.1: Most state-of-the-art audio generation systems employ a two-stage approach: An
encoder-decoder learns to produce a compressed representation of an audio signal (the audio la-
tents) at a low signal rate (10-80Hz) and reproduce audio signals from this compressed represen-
tation. Separately, a generative model learns to create new sequences of audio latents conditioned
on controls like text prompts. The generated latents are then decoded into new audio signals by the
decoder.

1.4.3 Controllable audio generation

The state-of-the-art approach for offline (non-realtime) generation of sounds (as well as other sig-

nals, like images) with long-term structure (i.e., in the order of 10 to 90 seconds) is a two-stage

approach [50]. Originally conceived in the image domain, two-stage generation models [51, 52]

led audio researchers to explore text-to-audio generation. Text-conditioned sound generation mod-

els like AudioLDM [53], AudioLM [54] and MusicLM[54, 55], MusicGen[56], MAGNet [57] all

follow a similar two-stage approach to audio generation (see Figure 1.1):

• (1) In the first step, we train an encoder/decoder to compress raw sound waveforms into
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sequences of latents (or “tokens” in the discrete case [55]) with a slower time resolution than

audio samples (e.g., 40-90Hz [58] vs. 44.1KHz for raw full-band audio). In the continuous

case, the autoencoder is typically a variational autoencoder (VAE) [59]. In the discrete case,

a residual vector-quantized VAE (RVQ-VAE[60]) is used instead.

• (2) In the second step, we train a prior model to generate sequences of latents. These latents

are easier to model than long sequences of raw audio samples due to their lower temporal

resolution, allowing us to generate new sequences of audio latents using diffusion [53, 61,

62, 63] or language modeling [55, 54, 64, 57], and thus generating novel audio waveforms

with “long”-term structure, usually in the range of 30 seconds [56] to 3 minutes [65].

• At inference time, a user provides their contol input (e.g. a text prompt, sound prompt,

or control signal) to the prior model, which generates a new sequence of audio latents (or

tokens). These are then passed to the decoder from step 1, which converts the generated

output into audio.

1.4.4 Autoregressive Language Modeling

In the early 2020s, two-stage generative music models used approaches based on autoregressive

language modeling [55]. Autoregressive sampling is slow in nature due to the high number of steps

required at inference time (one per acoustic token). For large model sizes, this limits a model’s

ability to function interactively, as they are much slower than real time and may have long waiting

times during processing.

In Chapter 2, I will discuss VampNet [16], the model I developed which was the first8 sys-

tem that used masked token modeling methods [66] for residual vector-quantized acoustic tokens,

reducing the number of sampling steps required to generate audio by an order of magnitude com-

pared to an autoregressive language model.

Further, autoregressive models inherently restrict downstream applications for interactive mu-

sic editing, as each generated token is only conditioned on the previous tokens. For an autoregres-

8Note: Google’s Soundstorm [60] was concurrent work that also took a similar approach
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sive model to perform tasks like inpainting (“filling in the middle”), one must rearrange the data

during training [67]. On the other hand, VampNet’s bidirectional attention allows it to perform

tasks like inpainting, music compression, and creating variations and timbre transfers of a sound

prompt. Notably, VampNet is capable of generating sounds that follow an input sonic gesture’s

overall structure while retaining the timbral qualities of the model’s fine-tuning data.

Although more recent methods optimize the speed of audio latent diffusion models for high

throughput [68] (e.g., generating 90s of audio in 200ms), these models are mostly still non-causal,

meaning that they aren’t designed for low-latency realtime audio streaming, with the recent excep-

tion of [69].

That being said, VampNet’s fast sampling method made it possible to run it interactively in a

loop, making it suitable for instrumental interaction in a live looping setting. We can leverage

large acoustic latent models in a live looping scenario: after a loop has been recorded into a

buffer, this buffer can be sent out for processing with the deep learning model. The recorded audio

clip can keep looping in the looper interface while the model is processing. Once processing has

finished, we can replace the contents of the original loop with our new “generated” loop. Using

this approach, a musician can interactively co-create with a generative model by adding layers of

sound to the loop along with the generative model, in a back-and-forth interaction where musical

ideas are iterated on both by the performer and the generative model during a live performance. To

demonstrate this interaction concept, I built a live looping instrument called unloop 9.

1.4.5 Latent Diffusion in Audio Generation

In addition to masked acoustic token modeling approaches [16, 64, 57, 70], latent audio diffusion

[53, 62] models have been proposed as another faster alternative to autoregressive acoustic token

models. They are now a common approach to two-stage audio generation [71, 72, 68, 65, 69, 73,

61, 63, 68]. Instead of modeling a multi-level sequence of discrete acoustic tokens produced by

a residual vector quantized variational autoencoder(RVQ-VAE), latent diffusion methods instead

9https://github.com/hugofloresgarcia/unloop
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learn to model sequences of the continuous latents of a variational autoencoder (VAE), removing

some of the added complexity introduced by residual vector-quantized acoustic tokens while still

being able to synthesize acoustic latents in fewer sampling steps than an autoregressive model.

Although masked acoustic token modeling and audio latent diffusion models may appear to

be wildly different approaches, several studies have pointed at the relationship between these two

approaches [74], noting that masked token models can be framed as a special case of discrete

diffusion, and that diffusion models perform autoregression in the frequency domain [50].

1.4.6 Controllability Beyond Text

Because two-stage generative audio models often aim to model a wide multi-timbral distribution

of sounds (e.g. various musical styles and instrumentations or a large library of foley sound ef-

fects), they require auxiliary conditioning to generate coherent samples in a controllable manner.

The most common way [55, 56, 57, 53, 65, 62, 75, 76, 77, 78, 79, 80, 81] to condition these

models is through text conditioning. While text conditioning is a good way to provide high-level

guidance of the timbre or general structure of a generated sound, it does not allow for gestural,

fine-grained temporal control over a generated sound, which is necessary in many scenarios in

music performance, composition, and sound design.

On the other hand, text-to-sound models often suffer from limitations to their control as they

only offer control over high-level aspects of the resulting signal, such as what sound categories

are present in a recording, but not precisely when or in what order these sounds occur [82]. Fur-

thermore, current paired (text, audio) datasets lack fine-grained textual descriptions of the timbral

idiosyncrasies and spectromorphology [83] of a sound (e.g. ’It is a gentle swoosh that lasts 10 sec-

onds and glides up from Middle C on the piano to the C one octave above it.’). This makes training

a text-to-sound model to follow momentary instructions impractical (and the end result would be

no different than using an existing programming language for sound synthesis like SuperCollider).

Overall, text-conditioning as a sole control method for a generative sound model faces prob-

lems related not only to the data available but also due to the nature of text descriptions themselves.
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It would be clunky to describe the desired precise rhythm, microtiming, spectral envelope, and res-

onant frequencies of a bell sound in a text description. Consider the following prompt: a small bell

with a strong partial at 600 Hz, playing a loose rhythm with a triplet feel, occasionally skipping

the first beat, affected with a low pass filter that slowly makes the sound darker over each repeated

triplet grouping. The filter ranges between a cutoff at 2kHz and 800Hz with high Q factor, giving

the bell a ‘wah’-like sound. Even if the model could even handle such a complex prompt (state-of-

the-art text-to-sound models couldn’t), this sonic idea could be more easily communicated to the

generative model by providing a vocal imitation that imitates a bell sound at the desired rhythm

and with the desired temporal spectral qualities. An accompanying piece of conditioning (like a

text prompt saying “bell” or an audio prompt with the desired bell sound) could complement the

vocal imitation, giving the model a reference timbral template to use with the given vocal gesture.

To improve over a purely text-to-sound input paradigm, some works in the music domain (in-

cluding VampNet) conditioned on masked audio tokens [16], multiple parallel instrument stems [70],

melody and text [56], chord and melody [84] or multiple structural control signals like song struc-

ture and dynamics [72]. Since most of the systems above are designed for musical applications

(i.e., they prioritize the role of pitch and harmony in the resulting music over the timbral morphol-

ogy of a sound), these approaches are not capable of controlling the fine-grained temporal behavior

of an arbitrary sound object, like the loudness, pitch contour and time-varying brightness of the

sound of an engine starting up. This kind of gestural control over the spectromorphology of a

sound is of importance to other sonic art disciplines like improvised music, experimental music,

electroacoustic music, sound art, sound design, etc.

In the speech domain, Morrison et al. [85] propose a fully interpretable and disentangled repre-

sentation for speech, which allows for fine-grained control over the pitch, loudness, and phonetic

pronunciation of speech. A notable result of this representation is the ability to generate “ono-

matopeias” by encoding non-speech sounds into their proposed speech representation and decod-

ing them with a speech generation model. One could imagine achieving the reverse: generating

arbitrary sounds and textures from vocal imitations by leveraging an intermediate representation
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where sounds and their vocal imitations are correlated in one way or another.

In Chapter 3, I will discuss Sketch2Sound: a sound generation method conditioned on a set of

interpretable, time-varying control signals that can be suitable for generating variations of sound

objects, editing existing sound objects by modifying their extracted control signals, as well as

gesturally generating sound-objects via a (text-prompted, optionally) vocal imitation. With a vo-

cal imitation, one can describe the spectromorphology of a target sound in an embodied manner,

making it an attractive interaction paradigm for timbrally-focused music, sound design, and other

sound art disciplines.

1.5 Digital Musical Instruments and Generative Modelling

Before two-stage audio generation approaches became common practice, lightweight single-stage

audio generation methods were built for use in realtime scenarios. One of these techniques is dif-

ferentiable digital signal processing (DDSP) [86, 87]. The original DDSP model [86] extracts the

pitch and loudness contour from an input source signal and uses it as conditioning for a differen-

tiable decoder model with built-in DSP modules, like a harmonic plus noise synthesizer. DDSP

quickly gained attention as a timbre-transfer tool [88]. However, DDSP’s reliance on the harmonic

plus noise synthesizer as a “sound decoder” meant that the model can only synthesize single mono-

phonic instruments, like “violin” and “flute”. Several other works improved over this limitation by

adding different synthesis modules [87, 89]. Instead of using DDSP’s harmonic plus noise synthe-

sizer as a way to decode sounds from control signals, the work proposed here leverages the decoder

of a neural autoencoder, like DAC [58] or RAVE [12], to map from a compressed latent represen-

tation to audio samples, allowing us to synthesize more than just monophonic sources, expanding

the model’s capabilities to polyphonic sources as well as complex, noisy sound textures.

Another notable example of a recent realtime audio synthesis model is RAVE. Introduced by

Caillon et al. at IRCAM, RAVE [12] is a realtime variational autoencoder for audio that was

introduced and quickly became adopted by a community of experimental musicians and music

technologists [18, 90], while also becoming the flagship timbre transfer model architecture for
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realtime AI-powered audio plugin company Neutone10. Although a VAE model (like RAVE) is

an “autoencoder” model, it is constantly subject to creative misuse by a community of computer

musicians. For example, a RAVE model can be used for timbre transfer by first training on a

target distribution of sounds (e.g. darbouka sounds) and using a different distribution of sounds

as input (e.g. the voice). In other cases, the RAVE latent space can be manually manipulated by

mapping each latent in the RAVE model. While these techniques produce audio signals that would

be deemed “unrealistic” and “low-quality” from an engineering perspective, the model’s (relative)

immediacy is preferable to a clunky two-stage generative model in a situation where being able to

achieve gestural and highly interactive realtime interactions, like in a musical instrument [19].

For example, the RAVE [12] model is a popular generative model choice for instrument makers,

thanks to its realtime inference speed and its integration into Max/MSP and other creative coding

languages and environments. Moisés Horta Valenzuela built semilla.ai [18], a musical instrument

that connects RAVE latent spaces to ancient Mesoamerican divination through “maı́z throwing”

technique. Pelinski et al. [91] built a pipeline for recording datasets and training neural networks

like RAVE on these datasets using the Bela platform. Shepardson and Magnusson introduced the

Living Looper [90], a live looper that records RAVE latent vectors to create “living” versions of

the guitar loops with the hope of creating a co-creative instrument with agential behavior. Visi’s

Sophtar[21] is a tabletop string instrument that incorporates self-playing modes involving feedback

and RAVE model processing. Privato et al. built Stacco [19], a musical instrument that leverages

magnetic interactions to drive RAVE models. A follow-up physical interface to Devis et al.’s

controllable RAVE model [92] was NeuroRack11, which situated generative audio synthesizers in

the context of modular synthesis, allowing for the model’s control signals to be manipulated via

control voltage (CV) signals.

One of the disadvantages of using the aforementioned single-stage approaches like RAVE is

that, possibly due to their size, these models are trained on unitimbral sound distributions (e.g., just

violin, just darbouka, just speech). A bidirectional, multi-distribution model (like VampNet or

10https://neutone.ai/
11https://github.com/acids-ircam/neurorack
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Sketch2Sound) is more flexible and allows one to explore a wider space of timbres with a single

neural network. This is a powerful advantage of using text-based conditioning as a complement

(Chapter 3) to the time-varying control signals (e.g., when creating sounds via vocal imitation) as

it allows a user to provide a strong conditioning signal that can reference a desired piece of sound

material from the model’s sound palette (i.e., it’s training or fine-tuning data).

1.5.1 Sound palettes: generative models as corpus-based musical instruments

Sampling (the musicmaking technique where sounds are stored and replayed in musical arrange-

ments, not to be confused with sampling from a probability distribution) has been a long-standing

tradition in musicmaking: our “modern” understanding of sampling has its origins in musique

concréte and tape music in the 1940s [93].

In a sound artist’s creative practice, the sound materials (samples) used in a performance or

composition can be an integral part of an artist’s style and message. Sound artists can manipulate

sound samples using sample-based instruments like samplers, concatenative synthesizers, granular

synthesizers, etc. These sample-based instruments allow for gestural control of the provided sound

sample: with a sampler, a sound artist can “shape” a sampled sound with a musical gesture and

effectively employ it in a composition or improvisation.

On a similar vein, corpus-based instruments [94, 95, 96, 97] allow a performer to work with

and manipulate large sound libraries, often by incorporating audio feature extraction techniques

like Mel-frequency Cepstral Coefficients (MFCCs) to allow content-based search through these

large collections of sound and query in realtime during a performance, or for offline composition

work [98]. Many different interactions for corpus-based musicmaking systems have been explored.

For example, one can interact with sound corpora through gestural sensor mappings [99], navigat-

ing 2-dimensional timbre spaces [100], or by providing a source audio signal for a concatenative

synthesis algorithm to match and follow [101, 98].

One could think about a generative audio model as another form of a corpus-based instru-

ment, like a probabilistic sampler: a system can create new sounds by modeling a probability
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distribution of a large sound sample library. Furthermore, a sound artist may be able to “shape”

sounds from said sound library by interacting through conditioning signals (loudness curves, text

prompts). Given that the sound material can be as important as the system that synthesizes from it,

a research effort must be made to empower sound artists with the ability to personalize a generative

audio model to follow the artist’s personal sound sample library, or sound palette.

Fine-tuning a generative model can be a powerful way to personalize it to conform to an artist’s

sound palette. Latent audio generative models could extend the practice of sampling further by

allowing the sound artist to manipulate and reference a very large sound corpus with novel control

paradigms like text and audio prompting (proposed in this dissertation).

LoRA (low-rank adaptation) [102] is a method for fine-tuning large transformer models effi-

ciently by learning low-rank decomposition matrices with much fewer learnable parameters than

those required to fine-tune the full transformer model. Through LoRA fine-tuning, VampNet can

be fine-tuned with custom sound palettes (or collections of sounds to be used as material for a

generative model) on a consumer GPU in under a day. To the best of my knowledge, VampNet

was the first generative latent audio model that adopted LoRA fine-tuning to allow for a user to

create their own generative model from their own sound palette. This allows sound artists to bring

their own colors to a generative sound co-creation system, which is essential if our goal is to build

artist-centered generative co-creation systems.

These methods are incorporated into the VampNet [16] system, which allows sound artists to

fine-tune a VampNet model on a custom sound palette in under a day on a consumer GPU. As a

result, the generative music systems proposed here give artists the power to use their sound material

as fine-tuning data for the built-in generative sound model, allowing them to “shape” their sounds

with the expressive power of modern generative modeling.

The following chapter will discuss VampNet, the first12 masked acoustic token modeling sys-

tem. VampNet was my first work within generative modeling for audio and has become a central

part of my creative practice with generative models (Chapter 5).

12concurrent: Soundstorm [64]
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CHAPTER 2

VAMPNET: MASKED ACOUSTIC TOKEN MODELING

Figure 2.1: VampNet overview. We first convert audio into a sequence of discrete tokens using
an audio tokenizer. Tokens are masked, and then passed to a masked generative model, which
predicts values for masked tokens via an efficient iterative parallel decoding sampling procedure
at two levels. We then decode the result back to audio.

In this Chapter, I discuss VampNet [16], a system for audio-prompted audio generation. This

work was previously published at the ISMIR 2023 conference [16]. While the following work was

led by me, it is important to note that this work was done in collaboration with Prem Seetharaman,

Rithesh Kumar, and Bryan Pardo. Thus, uses of the pronoun “we” in the remainder of this chapter

refer to work led by me, in collaboration with the researchers mentioned above.

In recent years, advances in discrete acoustic token modeling have resulted in significant leaps

in autoregressive generation of speech [103, 104] and music [55]. Meanwhile, approaches that

use non-autoregressive parallel iterative decoding have been developed for efficient image synthe-
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sis [66, 105]. Parallel iterative decoding promises to allow faster inference than autoregressive

methods and is more suited to tasks like infill, which require conditioning on both past and future

sequence elements.

In this work, we combine parallel iterative decoding with acoustic token modeling, and apply

them to music audio synthesis. To the best of our knowledge, ours is the first 1 extension of

parallel iterative decoding to neural audio music generation. Our model, called VampNet, can

be flexibly applied to a variety of applications via token-based prompting. We show that we can

guide VampNet’s generation with selectively masked music token sequences, asking it to fill in the

blanks. The outputs of this procedure can range from a high-quality audio compression technique

to variations on the original input music that match the original input music in terms of style, genre,

beat and instrumentation, while varying specifics of timbre and rhythm.

Unlike auto-regressive music models [104, 55], which can only perform music continuations

– using some prefix audio as a prompt, and having the model generate music that could plausibly

come after it – our approach allows the prompts to be placed anywhere. We explore a variety of

prompt designs, including periodic, compression, and musically informed ones (e.g. masking on

the beat). We find that our model responds well to prompts to make loops and variations, thus the

name VampNet 2. We make our code open source3 and highly encourage readers to listen to our

audio samples4.

2.1 Background

Two-stage approaches to generative modeling have gained traction in image [105, 66, 106, 107]

and audio [104, 55, 64, 56] synthesis, largely in part due to their computational efficiency. In the

first stage, a discrete vocabulary of “tokens” is learned for the domain of interest. The input is

put through an encoder to obtain these tokens, which can be converted back into the input domain

1While our work was under peer review, Google released SoundStorm [64], which leverages a similar parallel
iterative decoding approach to ours.

2To vamp is to repeat a short passage of music with variation.
3https://github.com/hugofloresgarcia/vampnet
4audio samples: https://tinyurl.com/bdfj7rdx
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via a corresponding decoder. In the second stage, a model is trained to generate tokens, and is

optionally given some conditioning (e.g. previous tokens, a text description, a class label) to guide

generation.

2.1.1 Stage 1: Tokenization

In images, visual tokenization has been leveraged for state-of-the-art classification [108] and syn-

thesis [66, 106, 109, 107]. The most popular approach is to use vector quantization on a latent

space. Similar approaches have been explored for audio [110], but until recently such approaches

have been restricted to low sampling rates (e.g. 16khz), or have been restricted to speech audio.

The “sampling rate” of the latent space (the number of latent vectors required every second to

represent audio) is a critical aspect of the tokenization scheme. The lower the sampling rate of

the latent space, the easier the next stage (generation) will be to accomplish. Recently, methods

based on residual vector quantization [111, 112] have been proposed for audio tokenization at high

compression rates with good reconstruction quality of high-sample-rate audio.

The primary work we leverage for audio tokenization is the Descript Audio Codec (DAC)

[58]. With DAC, audio is encoded into a sequence of tokens via a fully convolutional encoder.

The output of this encoder is then quantized using a hierarchical sequence of vector-quantizers

[109]. Each quantizer operates on the residual error of the quantizer before it. Because of this

residual vector quantization, DAC is able to reconstruct audio with very high quality, at a high

compression ratio. It, along with its predecessors [112, 111], are instrumental in enabling audio

language models like AudioLM [104], MusicLM [55], and VALL-E [103]. While we later briefly

describe our tokenizer, the key contributions of our work are applicable to the output of any audio

tokenizer and our specific audio tokenizer is not the focus of this work.

2.1.2 Stage 2: Generation

Given audio encoded as tokens, one common approach is to use an autoregressive model [113] for

generation. We will cover the other common approach (diffusion models) in Chapter 3. State-of-
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Figure 2.2: Training, sampling, and prompting VampNet. Training: we train VampNet using
Masked Acoustic Token Modeling, where we randomly mask a portion of a set of input acoustic
tokens and learn to predict the masked set of tokens, using a variable masking schedule. Coarse
model training masks coarse tokens. Coarse-to-fine training only masks fine tokens. Sampling:
we sample new sequences of acoustic tokens from VampNet using parallel iterative decoding,
where we sample a subset of the most confident predicted tokens each iteration. Prompting:
VampNet can be prompted in a number of ways to generate music. For example, it can be prompted
periodically, where every P th timestep in an input sequence is unmasked, or in a beat-driven
fashion, where the timesteps around beat markings in a song are unmasked.

the-art (SOTA) audio generation approaches at the time we developed VampNet include AudioLM

[104], MusicLM [55], and JukeBox [114]. These all use an autoregressive approach, generat-

ing each acoustic token in the sequence in a step-by-step fashion using transformer-based [115]

decoder-only models. Autoregressive sampling is slow in nature due to the high number of steps

required at inference time [66]. Further, autoregressive models inherently restrict downstream

applications, as each generated token is only conditioned on the previous tokens. For an autore-

gressive model to perform tasks like inpainting (“filling in the middle”), one must re-arrange the

data during training [67].

In language, masked modeling has been used extensively as a pre-training procedure for high-

quality semantic representations [116]. This procedure has also been extended for representation

learning in images [117] and audio [118]. Masked modeling for representation learning generally

has a constant mask probability. For example, in BERT [116], tokens are masked 15% of the

time during training. It has been shown that this approach is equivalent to a single-step discrete
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diffusion model [74], that uses masking for its noising procedure. Therefore, we can extend masked

modeling to masked generative modeling by varying the probability of masking a token during

training. This was done for image generation in MaskGIT [66], and in language [74]. Similar to

diffusion modeling [119, 120], which seeks to synthesize data starting from random noise through

a series of denoising steps, masked generative modeling seeks to synthesize data starting from

completely masked data through a series of “unmasking” steps.

Key to the efficiency of MaskGIT and related approaches is a parallel iterative decoding pro-

cedure. In parallel iterative decoding, the model predicts every token in the output sequence in a

single forward pass. However, after just one forward pass of the model, the output often does not

have high quality. The output of the first sampling step is re-masked, with a lower masking proba-

bility, and then put through the model again. In this way, masked generative models can efficiently

refine their output, resulting in high quality generation.

In unconditional generation tasks, the model is asked to generate a realistic sample from the

target data distribution from scratch, without any guidance. This is a difficult problem, as many

target data distributions are highly multimodal. Unconditional generative models are suscepti-

ble to mode collapse [121], blurry samples, mode averaging, and other issues[122]. Therefore,

some conditioning is helpful as it provides some signal for the model to resolve the multimodality.

Conditioning is also a commonly used method to guide the output of the system towards desired

content.

Conditioning can take the form of a class label, a genre tag or lyrics [114], or an associated text

description [123, 107, 55]. Conditioning can also be applied at every timestep, like the semantic

tokens of AudioLM [104], or aligned text or phonemes for text-to-speech generation [103].

In this work,we adopt a masked generative modeling approach with a parallel iterative decoding

procedure, inspired by work in vision such as MaskGIT [66] and Paella [105], as illustrated in

Figure 2.1. We do not apply any conditioning beyond that provided by the unmasked tokens in our

encoded audio. As we show later, different approaches to masking, applied at inference time, can

be used to steer generation in useful and artistic ways.
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In training, tokens are masked randomly throughout the sequence. The model is then asked to

predict the value of each of the masked tokens in a single forward pass, but it is conditioned on all

of the unmasked tokens, both in the future as well as in the past. We vary the number of tokens that

are masked during training, allowing us to generate audio at inference time through a sampling

procedure. We now describe our method in more detail.

2.2 Method

We adapt the procedure of Masked Visual Token Modeling, proposed in MaskGIT [66] to audio,

accounting for several key differences between the vision and audio domain. We call our approach

Masked Acoustic Token Modeling.

2.2.1 Masked Acoustic Token Modeling

We first train an audio tokenizer based on the techniques used to develop the Descript Audio Codec

(DAC) [58]. Unlike the visual tokens of MaskGIT, our acoustic tokens are hierarchical in nature

due to residual vector quantization. As a first step, the audio signal x is encoded at each time step

t as a a D dimensional latent vector Z. We then quantize Z using N vector quantizers. Quantizer

1 produces Ẑ1, a quantized approximation of Z that has residual error R1 = Z − Ẑ1. Thereafter,

the residual from each quantizer i is passed to the next quantizer i+1, which produces a quantized

approximation of the remaining residual error: Ri ≈ ˆZi+1. Vector Z is reconstructed by summing

the output of the N quantizers: Z =
∑N

i=1 Ẑi.

Since the encoded signal is represented as a quantized vector of N discrete tokens at each

timestep, we have N tokens that can be masked or unmasked at each timestep. Rather than attempt

to generate all tokens at once, we instead split the N tokens into Nc “coarse” tokens, and Nf “fine”

tokens, as in AudioLM. We then train two generative models: one that generates the fine tokens

given the coarse tokens as conditioning, and one that generates the coarse tokens given a sequence

of coarse tokens. To generate a sample (Figure 2.1), we chain the two models together. First, we

apply the coarse model to generate a sequence of coarse tokens. Then, we apply the coarse-to-fine
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model to generate the fine tokens. We decode the tokens to a 44.1khz waveform using the decoder

of our audio tokenizer.

2.2.2 Training procedure

Let Y ∈ RT×N be a matrix representing the output of the encoder for some audio segment. Each

element yt,n in Y is a token from the nth level codebook at timestep t. Let YM be the set of

all masked tokens in Y and YU be the set of all unmasked tokens in Y. The model generates a

probability distribution over the set of possible codebook values for each token y ∈ YM , given the

unmasked tokens and the model parameters θ. The training objective is to maximize the probability

of the true tokens. This corresponds to minimizing the negative log likelihood.

L = −
∑

∀y∈YM

log p(y|YU , θ) (2.1)

To predict the masked tokens, we use a multi-layer bidirectional transformer, which predicts

the probabilities of each possible token at every timestep, for every quantizer. If each quantizer

has a codebook size of C possible values, and there are N quantizers, then the last layer of the

network will be a fully connected layer of shape (E,CN), where E is the dimensionality of the

output of the last layer. We then reshape this output into (EN,C), and compute the cross-entropy

loss between the ground-truth one-hot token and the predicted token. Because the transformer is

bidirectional, it can attend to all tokens in the input sequence to optimize the loss for each token.

For the coarse-to-fine generative model, the input sequence always contains Nc coarse tokens,

and the masking operation is restricted to the Nf fine tokens. The last layer of this network only

predicts masked fine tokens. Otherwise, the training procedure for both models is identical.

2.2.3 Sampling

We follow the same iterative confidence-based sampling approach used in MaskGIT. More con-

cretely, given YM as the set of masked tokens and YU as the set of unmasked tokens, do:
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1. Estimate. For each masked token y in YM , estimate the conditional probability distribution

over its vocabulary of codebook values V .

2. Sample. For each masked token, sample from the distribution to generate an associated

token estimate ŷ ∈ V . We don’t use any sampling tricks in this step, sampling from the

categorical probability distribution for each token as-is.

3. Rank by Confidence. Compute a confidence measure for each of the sampled tokens by

taking their prediction log-probabilities and adding temperature-annealed Gumbel noise to

them:

confidence(ŷt) = log(p(ŷt)) + temp · gt (2.2)

where ŷt is a token estimate at timestep t, gt is an i.i.d sample drawn from Gumbel(0,1) [124],

and temp is a hyperparameter that is linearly annealed to 0 over the number of sampling

iterations. Then, sort the set of sampled token estimates by the confidence computed above.

We find that high temperature values (e.g. > 6.0) result in higher quality samples.

4. Select. Pick the number of tokens to mask at the next sampling iteration, k, according to the

masking schedule 5. Take the k lowest confidence estimates and toss them out, re-masking

their tokens. Place the remaining high-confidence token estimates in YU , removing their

tokens from YM .

5. Repeat Return to step 1 until the number of iterations has been reached.

2.2.4 Prompting

Interactive music editing can be enabled by incorporating human guidance in the sampling proce-

dure through the conditioning prompt of unmasked tokens. Because our approach isn’t conditioned

on any signal other than the input audio itself, we find that various types of prompts are useful for

obtaining coherent samples, as they lower the amount of multimodality when sampling from the

model. Like AudioLM, we can prompt our model with prefix audio of some duration (usually

5k = γ( t
tT
)D, where t is the current iteration, tT is the total number of iterations, and D the total number of tokens

in the sequence. The scheduling function γ is a cosine schedule.
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between 1 and 4 seconds), and it will provide a continuation of that audio. Unlike AudioLM, and

other auto-regressive approaches, we can also prompt our model with suffix audio, and it will gen-

erate audio that leads up into that suffix. We can provide prefix and suffix audio, and the model

will generate the remaining audio, such that it is appropriate, giventhe specified prefix and suffix.

We can also apply a “periodic” prompt, where all but every P th timestep are masked.The lower

P is, the more the generated audio will sound like the original, as the model is highly conditioned.

For example if P = 2, then the model is essentially behaving like a upsampler, imputing the tokens

for every other timestep. As P increases, the model shifts from behaving in a compression mode

to a generative mode, creating variations that match the style of the original.

Another useful style of prompt are “compression” prompts, where all codebooks other than the

most coarse-grained are masked. This gives the model strong conditioning on every timestep, so

the model is likely to produce audio that closely matches the original. We can combine this prompt

with a periodic prompt with low P for even more extreme compression ratios. Given the bitrate of

the codec B , which has number of codebooks N , a downsampling rate P for the periodic prompt,

and a number of kept codebooks Nk, we can achieve a bitrate of B/P (N −Nk).

Finally, we can design music-specific prompts, which exploit knowledge about the structure

of the music. More concretely, we explore beat-driven prompting, where timesteps that fall on or

around the beat are left unmasked. The model is left to create music between these beats, resulting

in interesting variations on the original music. These prompts can all be combined to create a very

useful music creation tool. In concert with a well designed user interface, VampNet shows promise

as the basis for a next-generation music editing and creation suite.

2.3 Experiments

Our experiments aim to evaluate VampNet’s capability to both compress and generate music, given

the various prompting strategies described in Section 2.2.4. For our objective audio quality mea-

sures, we use a multiscale mel reconstruction error and the Fréchet Audio Distance (FAD). Mel-

reconstruction error is defined as the L1 distance between log-mel spectrograms at various time-
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scales,

DF,M = ||ŜF,M − SF,M ||1 (2.3)

where F is the FFT size of each spectrogram, and M is the number of mel-frequency bins. We

use F ∈ [2048, 512] and M ∈ [150, 80], with a hop size of 1
4

the FFT size. Mel-reconstruction is

valuable as a metric for compression quality, but not for generation quality, since it is likely that

models produce audio that does not match one to one with the original target audio. For generation

quality, we use FAD, which measures the overlap between distributions of real and generated audio.

Unlike mel-reconstruction, FAD is geared more towards evaluating if sample quality falls within

the data distribution of the real audio, and can be used to evaluate generation quality.

2.3.1 Dataset

Similar to JukeBox [114], we collect a large dataset of popular music recordings. Our dataset

consists of 797k tracks, with a sampling rate of 32 khz. These tracks are resampled to 44.1kHz to

make compatible with our tokenizer.

2.3.2 Data Preprocessing

We use a subset of 2k tracks for validation, and another subset of 2k tracks for testing. We ensure

that there is no artist overlap between train, validation, and test tracks. In addition, we collect a set

of music and non-music data (speech, environmental sound), which we used to train our tokenizer,

using the datasets described in DAC [58]. All audio is normalized to -24dbFS. We do not use any

metadata about these files during training, as our model is trained unconditionally.

2.3.3 Network Architecture and Hyperparameters

The audio tokenizer model we use takes as input 44.1kHz audio, and compresses it to a bitrate

of 8kbps using 14 codebooks, with a downsampling rate of 768x. The latent space therefore is at

57Hz, with 14 tokens to predict at every timestep. We designate 4 of these tokens as the coarse
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Figure 2.3: Mel reconstruction error (top) and Fréchet Audio Distance (FAD, bottom) for VampNet
samples taken with varying numbers of sampling steps, taken using a periodic prompt of P =
16. The samples were generated by de-compressing tokens at an extremely low bitrate (50 bps),
effectively generating variations of the input signals.
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tokens, and the remaining 10 as the fine tokens. Refer to the Descript Audio Codec [58] for details

on the tokenizer architecture. We train the tokenizer for 250k steps.

The VampNet architecture (for both coarse and coarse-to-fine models) consists of a bidirec-

tional transformer [115] with relative attention [125] and an embedding dimension of 1280 and

20 attention heads. The coarse model has 20 attention layers, while the coarse-to-fine model has

16. We train the coarse and coarse-to-fine model for 1M and 500k steps, respectively. We train

with the AdamW optimizer [126] with β1 and β2 set to 0.9 and 0.999, respectively. We use the

learning rate scheduler introduced by Vaswani et al [115] with a target learning rate of 0.001 and

10k warmup steps. We use a dropout of 0.1, and a batch size of 25, with a GPU memory budget of

72GB.

2.3.4 Efficiency of VampNet

We first validate that VampNet can generate realistic music audio in a low number of steps. To do

this, we run VampNet using one of our prompts (the periodic prompt, with P = 16) on our test set,

on 10-second excerpts. We vary the number of sampling steps in [1, 4, 8, 12, 36, 64, 72], and report

metrics for each sampling step.

2.3.5 Effect of prompts

We seek to understand how VampNet responds to different prompts, as discussed in Section 2.2.4.

The prompts range from “compression” prompts, which compress music to a low bitrate, to more

creative “generative” prompts. We examine whether compression and generative prompts exist on

a continuum, and whether decompression from low bitrates results in generative behavior.

We draw 2000 10-second examples from our evaluation dataset, encode them into token streams

with our audio tokenizer, and manipulate the token streams in four ways:

1. Compression prompt: C codebooks are left unmasked, starting from the coarsest codebook.

All other tokens are masked. We set Nk = 1.

2. Periodic prompt: every P th timestep is left unmasked. In an unmasked timestep, tokens
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Figure 2.4: Multiscale Mel-spectrogram error (top) and Fréchet Audio Distance (FAD, bottom) for
VampNet 10s samples taken with a different types of prompts.
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from every codebook are unmasked. All other tokens (e.g. tokens in timesteps that do not

correspond to the period P ) are masked. We set P ∈ [8, 16, 32].

3. Prefix and suffix (inpaint) prompts: a segment at the beginning and at the end of the sequence

is left unmasked. All other tokens are masked. This prompt is parameterized by a context

length in seconds. We set the context to be either 1 second or 2 seconds, which corresponds

to 57 or 114 timesteps.

4. Beat-driven prompt: we first process the audio waveform with a beat tracker [127]. Then,

around each detected beat, we unmask timesteps to the right of the beat. We examine a 75ms

unmasked section around each beat, which is about 4 timesteps per beat.

After manipulating the input token streams with our prompts, we generate new musical signals

from these masked token streams using VampNet, and compute FAD and mel-reconstruction error

between the generated signals and the input signals from our music dataset. We include a noisy

token stream baseline, where a portion (as dictated by mask ratio r) of the tokens in the input token

stream are replaced with random tokens. We also include as baseline the codec by itself, as well

as the coarse-to-fine model.

Finally, we examine how these prompts can be combined - specifically the compression and

periodic prompts. By manipulating the hyperparameters of these prompts (C and P ), we can shift

the model behavior from compression to generation. As more timesteps are masked, the model

must generate plausible musical excerpts that connect the unmasked timesteps, that may not match

the input music.

2.4 Results and discussion

Results for our experiment varying the number of sampling steps used to generate samples with

VampNet are shown on Figure 2.3. We find that VampNet achieves the lowest FAD with 36 sam-

pling steps, although 12 sampling steps achieves comparable performance. In practice, we find

that samples taken with 24 steps achieve a fair trade-off between generation quality and compute

speed, with 10-second samples taking around 6 seconds to sample on an NVIDIA RTX3090. In
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contrast, to generate 10 seconds of audio with an autoregressive model would require 574 steps,

which would take around 1 min to generate 10 seconds of audio, given an autoregressive model

with the same number of parameters as ours, and the same tokenizer.

Results for our study on the effect of each prompt are shown in Figure 2.4. First, we note that

while the noisy token baseline has comparable mel reconstruction to all prompts, it performs very

poorly in terms of FAD. This indicates that while our prompting strategies may result in audio that

is not a perfect match to the original input audio, it still falls inside the distribution of plausible

music.

Of our proposed prompts, we find that beat-driven prompts perform best, achieving the lowest

FAD of all prompts. A notable result here is that the periodic prompt with P = 16 (35 conditioning

timesteps) performs on par with inpainting with 1 second of context (57 conditioning timesteps).

Therefore, prompt techniques that spread out the conditioning tokens throughout the sequence

(periodic prompts) are able to use fewer conditioning timesteps to generate samples of comparable

quality to those generated by sampling techniques that place all of the conditioning tokens at the

start and end of the sequences (inpainting).

Qualitatively, we also find that beat-driven prompts can keep a steadier tempo than other

prompts, though their outputs tend to resemble the original music closer than periodic prompts.

In practice, a mix of beat-driven, periodic, and inpainting prompts can be employed to steer of

VampNet in creative ways. To illustrate, we highly encourage the reader to listen to the accompa-

nying sound samples 6.

We then combined periodic and compression prompting to show how the model’s behavior

shifts between reconstruction and generation tasks, as more tokens are masked away. Results for

this experiment are shown in Figure 2.5. At higher bitrates, (600 bps and above), VampNet is

able to accurately reconstruct the original music signal, achieving low mel-spectrogram error and

FAD values with respect to the evaluation music audio. At bitrates of 200bps and below, VampNet

has comparable reconstruction quality to the noisy token baselines, indicating that the sampled

6audio samples: https://tinyurl.com/bdfj7rdx
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Figure 2.5: Mel-spectrogram error (top) and Fréchet Audio Distance (FAD) (bottom) for VampNet
samples at varying bitrates. A baseline is provided by replacing tokens in the input sequence with
random tokens, per noise ratio r.
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VampNet signals no longer resemble the input audio in terms of fine-grained spectral structure.

However, the FAD for VampNet samples at low bitrates is much lower than the FAD for noisy

baselines. This indicates that even though VampNet isn’t able to reconstruct the input music signal

at low bitrates, it is still able to generate coherent audio signals with musical structure, that are

closer to the distribution of “real music” than our noisy baseline.

2.4.1 Ethical Considerations Surrounding VampNet

The dataset used to train VampNet was collected by me during the months of September and

October 2023, for research purposes at the Interactive Audio Lab. The dataset contains music from

approximately 206k artists across approximately 5.8k genres. A list of genres was copied from the

Echo Nest’s Every Noise at Once 7 genre map. This list of genres was used to collect Spotify API

metadata (no audio) for 797k tracks. The audio for each track was then downloaded using the open

source tool spotdl 8, which uses the collected Spotify track IDs to find a corresponding YouTube

video and download the track’s corresponding mp3 recording.

Admittedly, the data used to train the VampNet model contains copyrighted recordings. It’s

worth noting that this data was acquired (and is used) for the purpose of academic research only.

Scraping copyrighted data to train generative models can be extremely harmful and have nega-

tive ethical consequences when said data (or resulting models) are used for commercial purposes.

Members of my lab (including myself) have taken several measures (both systematically and in-

teractionally) to ensure that the uses of the data collected pose more benefits than harmful risks for

the musicians and sound artists at stake.

Barnett [128] identifies 5 broad negative impacts of AI models in music: (1) loss of agency and

authorship (2) creativity stifling (3) predominance of western bias (4) copyright infringement and

(5) cultural appropriation.

As an active, working musician in Chicago, I’ve had the opportunity to have casual conversa-

tions with my musician friends. I’ve thought deeply about the impacts highlighted by Barnett, and

7https://everynoise.com/engenremap.html
8https://github.com/spotDL/spotify-downloader
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have made several design decisions that mitigate these issues.

Regarding a loss of agency and authorship (1), Barnett refers to Frid [129], who finds that

musicians were wary of giving a machine too much control. Using the techniques discussed in

Chapter 5, VampNet allows for gestural interactions with fine-grained temporal detail, giving the

musician a greater sense of control over the temporal unfolding of a sound than, say, a text-to-audio

model.

I believe the issue of generative models stifling creativity (2) becomes a problem when the gen-

erative model itself is encapsulated in an interface made for casual, quick creation and consumption

of music, where the user is put into a curator mindset rather than a creator one. This interaction

is often commodified into a pay-to-play product, e.g., suno.ai and udio.com. Instead, I try

to position VampNet as a computer music tool for sound transformation and collaging instead

(Chapter 5), meant to be used as part of a larger musical process, like a live performance with a

lead instrument (Section 5.4.2), an interactive sound installation (Section 5.4.4) or an immersive

fixed-media electroacoustic voice transformation piece (Section 5.4.3).

Fine-tuning a generative model’s weights on a new collection of sounds (Section 5.1) makes

it extremely unlikely that samples from the original model will contain sounds from pretrained

model’s training data. I highly encourage (and facilitate) that musicians use their own collections

of sounds (either recorded or hand-picked by them) to use as material for VampNet using a method

called sound palette fine-tuning, described in Section 5.1. A musician bringing their own sound

palette to the model mitigates the predominance of western bias (3), copyright infringement (4),

and (5) cultural appropriation. By consciously curating their own sound palettes, musicians can

choose to collect sounds that do not reflect western biases, infringe copyright or harmfully appro-

priate any cultural elements.

Using the Data for Good: Training Data Attribution for Generative Models

A generative modeling scenario would not be the first time a musician copied another musician’s

recording to use as material in a new original composition. In fact, entire musical styles and genres
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are based around this technique, sampling.

A big, great contrasting difference between sampling and generative modeling here is the sound

artist’s knowledge of the provenance of the material being copied/sampled/generated. Artists who

sample recordings, most of the time, are fully aware and knowledgeable of the origin, style, original

artist, and musical tradition that a particular sample may belong to.

A generative modeling user, as it currently stands, unfortunately does not have any access to

this information when they generate sonic material with a generative model: the generative model

is a black box that does not elucidate its influences when generating a particular piece of music.

My labmate, J. Barnett, led a study [130] (in collaboration with me and Bryan Pardo) which

proposes a method that leverages VampNet’s training dataset (as well as a VampNet model itself)

to inform the user of a particular generation’s “influences”: the songs in the training dataset which

are the most similar to a piece of generated audio. This method requires us to have full access to a

large-scale generative audio model as well as the data used to train it. By attributing each generated

snippet to its closest audio in the training data, we can create generative music co-creation systems

that encourage a musician to gain knowledge of the surrounding musical context and culture of the

music being created, which is an important duty of any musician working within any tradition.

2.5 Impact and Follow On

VampNet set the stage for other research works that explored music generation via masked/parallel

acoustic token modeling, including [70, 131, 57, 132]. My technical work with VampNet was

followed by a period of creative practice and collaboration with sound artists, composers and per-

formers, interface development, and further technical development, as discussed in Chapter 5.

From a technical standpoint, nowadays, continuous audio latent diffusion models are consid-

ered an (arguably better) alternative to acoustic token modeling methods, which can be considered

a form of discrete diffusion [74]. Continuous audio latent diffusion models are less unwieldy than

discrete audio token diffusion models, as they require no residual vector quantization on the latent

audio encoder.
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That being said, VampNet allows for manipulating audio in particular ways that cannot be

replicated in (unless they adopt a training scheme similar to VampNet). I propose and discuss these

new token manipulation techniques and how they can be used in creative works in my practice-

based research chapter (Chapter 5).

The next chapter (3) discusses Sketch2Sound, a system that is capable of synthesizing audio

from vocal (and sonic) imitations and interpretable, time-varying control signals. The work pre-

sented in this makes use of an audio latent diffusion model.
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CHAPTER 3

CONTROLLABLE AUDIO GENERATION VIA CONTROL SIGNALS AND SONIC

IMITATIONS

linear  
proj.

input (vocal imitation) output

noise latents

loudness

centroid

pitch probabilities

text-audio 
latent DiT

text prompt median  
filter"engine revving"

time (s)

Figure 3.1: Overview of Sketch2Sound. We extract three control signals from any input sonic
imitation: loudness, spectral centroid (i.e., brightness) and pitch probabilities. We apply median
filters to these signals, encode them via a linear projection, and add them to the noisy latents that
are used as input to a DiT text-to-sound generation system. To hear this example (and many more)
go to https://hugofloresgarcia.art/sketch2sound.

3.1 Prologue

This work was completed in the Summer, Fall of 2024 and Winter 2025 during a Research Intern-

ship at Adobe Research in collaboration with Oriol Nieto, Justin Salamon, Bryan Pardo, and Prem

Seetharaman. Thus, uses of the pronoun “we” in the remainder of this chapter refer to work led by

me, in collaboration with the researchers mentioned above. This work was previously published at

the ICASSP 2025 conference [17].

It should be noted that this system was announced by Adobe at the Adobe MAX conference

in October 2024 as part of a suite of tools for sound design for video, under the name “Project

Super Sonic” 1. As of June 5th, 2025 a beta version of a voice-to-sound effects interface has been

announced as coming to Adobe Firefly 2, a generative modeling playground for creating images,

audio, and videos with generative modeling.

1https://techcrunch.com/2024/10/15/adobes-project-super-sonic-uses-ai-to-generate-sound-effects-for-your-videos/
2https://firefly.adobe.com/
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3.1.1 Individual Contributions

I (H. Flores Garcı́a) proposed the initial motivation to generate sounds from vocal imitations, in-

spired by discussions with P. Seetharaman and my compositions where I transformed a collection

of sounds with vocal gestures using VampNet (See Section 5.4). P. Seetharaman and I devised

the original “frame” of how the system would work as a “simplest solution”, which would end

up working quite satisfactorily. P. Seetharaman, O. Nieto, J. Salamon, and B. Pardo all provided

guidance on the research methods and suggested compelling evaluations.

From a technical standpoint, I (H. Flores Garcı́a) wrote all the code for the Sketch2Sound

method, adapting off of the baseline text-to-sound DiT recipe that was created and maintained

by P. Seetharaman, O. Nieto, and J. Salamon. This includes the control signal extraction, me-

dian filtering, adapter layers, fine-tuning, and all the required evaluations metrics. The paper was

primarily written by H. Flores Garcı́a and edited by all the other authors.

3.1.2 A remark on the motivation behind this work

All the other chapters in this dissertation (except for this one) are focused on systems for mak-

ing experimental music and sound art.Instead, this chapter is motivated around an adjacent yet

slightly different craft: sound design (specifically Foley sound). Unlike sound artists or computer

musicians, sound designers often work very closely with other media, like visual arts, video, film,

or video games. This functionally changes the role of sound in the resulting artwork, and thus

also changes what the most suitable instrument for that craft might look like. However, there’s a

great deal of similarity between experimental music/sound art and foley sound: both crafts value

gestural expression. Improvised experimental musics often incorporate the concept of gesture,

exploring and playing with the gestural limits of the performer’s instrument. Foley sound is a

performance art that happens behind the scenes: Foley artists play their props like musical in-

struments. Foley artists highly value the “simple, beautiful, and performative nature”3 of sound

design.

3https://www.youtube.com/watch?v=WFVLWo5B81w
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We, as designers and engineers of sound design tools, must follow these design principles and

create systems – much like musical instruments – that support and enable new kinds of “simple,

beautiful, and performative” interaction.

3.2 Introduction

Sound design is the craft of storytelling through sonic composition. Within sound design, Foley

sound is a technique where special sound effects are designed and performed in sync to a film

during post-production [133]. These sound scenes are typically performed by a Foley artist on a

stage equipped with abundant sound instruments and other soundmaking materials4. Foley sound

is a skilled and gestural performance art: performing a sound scene with sound-making objects

and instruments (instead of arranging pre-recorded samples post hoc) allows sound artists to create

fluent and temporally aligned sounds with a “human” (i.e., gestural) touch. Adding this gestural

touch to the resulting sound composition often results in a sonic product of great aesthetic and

production value.

Recent research in generative modeling for sound has paved the way for text-to-sound sys-

tems[65, 63, 53], where a user can create sound samples from text descriptions of a sound (e.g., “ex-

plosion”). While the text-to-sound paradigm can help a sound designer find sounds more quickly

(and, perhaps in the future, with a higher degree of specificity), a sound designer still has to

painstakingly modify the temporal characteristics of the generated sound so that they can be in

sync with the visuals in the editing timeline. This is in opposition to the natural way that Foley

artists gesturally create sound effects by physically performing with physical soundmaking objects.

To overcome the drawbacks of a purely text-to-audio interaction, several works in the mu-

sic domain sought to condition generative models on audio [16], parallel instrument stems [70],

melody [56], sound event timestamps and frequency [134], or multiple structural control signals

like song structure and dynamics [72]. Notably, [92] condition an audio VAE on control signals

such as brightness and loudness, though their experiments are limited to models trained on nar-

4Example of a Foley artist performing a scene: youtu.be/WFVLWo5B81w
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row sound distributions (e.g., violin, darbouka, speech) and not a multi-distribution text-to-audio

model. For speech, [85] proposes a fully interpretable and disentangled representation for speech

generation and editing, which allows for fine-grained control over the pitch, loudness, and phonetic

pronunciation of speech.

The human voice is a gestural sonic instrument [4]: it allows us to realize sounds without

having to perform any symbolic abstraction (i.e., putting a sound into words) beforehand. When

humans communicate audio concepts to other people, they typically combine language and vocal

imitation [5, 6, 7], and recent work has shown its utility for query-by-example search of audio

databases [zhang2016imisound , 8, 9]. This is a more natural method than describing the evolu-

tion of pitch, timing, and timbre via pure text descriptions [5], and voice-driven sound synthesis

interactions have been of interest long before modern generative modelling for their embodied

capabilities [135, 136, 137, 138, 139, 140].

We propose Sketch2Sound: a text-to-audio model that can create high-quality sounds

from sonic imitation prompts by following interpretable, fine-grained time-varying control

signals that can be easily extracted from any audio signal at different levels of temporal de-

tail: loudness, brightness (spectral centroid) and pitch. We expand upon previous work [71] by

developing a method capable of following the loudness, brightness and pitch of a vocal imitation,

with the option to drop any of the three controls. Additionally, we propose a technique that varies

the temporal detail of the control signals used during training by applying median filters of differ-

ent window sizes to the control signals before using them as input. This allows sound artists to

specify the degree of temporal precision to which a generative model should follow the specified

control signals, which improves sound quality in sounds that may be too hard to perfectly imitate

with one’s voice.

This method is not limited to just vocal imitation: any kind of sonic imitation can be used to

drive our proposed generative model – we place the focus on vocal imitation due to people’s innate

ability to imitate sounds with our voices. Vocal imitations can always be augmented through other

sonic gestures like clapping, tapping, playing instruments, etc. Sketch2Sound can be added to any
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existing latent diffusion transformer (DiT) sound generation model with as little as 40k fine-tuning

steps. Unlike ControlNet methods [73, 141] that require an extra trainable copy of the entire neural

network encoder, Sketch2Sound requires only a single linear layer per control.

Our experiments show that Sketch2Sound can generate sounds that closely follow the input

control signals (loudness, spectral centroid, and pitch/periodicity) from a vocal imitation while

still achieving a high degree of adherence to a text prompt and an audio quality comparable to the

text-only pre-trained model. We show that our median filtering technique leads to improved audio

quality and text adherence when generating sounds from vocal imitations. We also show that,

during inference, a user can arbitrarily specify a degree of temporal detail by choosing a median

filter size, allowing them to navigate the trade-off between strict adherence to the vocal imitations

and audio quality + text adherence.

To the best of our knowledge, this is the first sound generation model capable of following

vocal imitations and text prompts by conditioning on a set of holistic control signals suitable for

generating sound objects with fine-grained, gestural control of pitch, loudness, and brightness. We

believe Sketch2Sound will give sound artists a more expressive, controllable, and gestural interac-

tion for generating sound-objects than existing text-to-audio and other conditional sound genera-

tion systems. We highly encourage the reader to listen to our audio examples demonstrating

Sketch2Sound. 5

3.3 Method

We propose a method for conditioning an audio latent diffusion model on a set of interpretable,

time-varying control signals that are suitable tasks creating variations of sounds and generating

new sounds expressively via text-prompted sonic imitations.

3.3.1 Time-varying control signals for sound objects

We use the following control signals as conditioning for Sketch2Sound:

5https://hugofloresgarcia.art/sketch2sound
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• Loudness: We extract the per-frame loudness of an audio signal by performing an A-

weighted sum across the frequency bins in a magnitude spectrogram [85] and taking the

RMS of the result.

• Pitch and Periodicity: We use the raw pitch probabilities of the CREPE [142, 143] (“tiny”

variant) pitch estimation model. To avoid leaking timbral information in this signal, we zero

out all probabilities below 0.1 in the pitch probability matrix.

• Spectral Centroid is defined as the center of mass of the frequency spectrum for a given

audio frame. Frames with a higher centroid will be perceived as having a brighter timbre.

To preprocess the centroid, we convert the signal from linear frequency space (i.e., Hz) to a

continuous MIDI-like representation, scaled to roughly a (0, 1) range by dividing the input

signal by 127 (note G9, roughly 12.5kHz), which we found to stabilize the first steps of

training.

Other momentary time-varying control signals may be used as well.

3.3.2 Conditioning a latent audio DiT on time-varying control signals

Refer to Figure 1 for a visual overview of our approach. We use a large pre-trained text-to-sound

latent diffusion transformer (DiT), similar to the one described in [65, 62] (text-conditioned only,

no timing conditioning) and adapt it to generate sounds conditioned on the time-varying control

signals mentioned above. The latent diffusion model for text-to-sound generation has two parts:

first, a variational autoencoder (VAE) compresses 48kHz mono audio to a sequence of continuous

vectors of dim 64 at a rate of 40Hz. Then, a transformer model is trained to generate new sequences

of latents, which can be decoded into audio using the VAE decoder. This text-to-audio DiT was

pre-trained on a large mix of proprietary, licensed sound effect datasets and publicly available CC-

licensed general audio datasets. Once the model is pre-trained, we fine-tune it for 40k steps and

adapt it to handle our time-varying control signals.

Because the time-varying control signals can be easily and efficiently extracted from any audio

signal on the fly, we can fine-tune the pre-trained text-to-audio model in a self-supervised manner:
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Given any input audio signal, we extract the three control signals (loudness, centroid, pitch) from

the audio signal and use them as conditioning for the model during fine-tuning. The model is then

fine-tuned using the same recipe used during training: learning the reverse diffusion process from

a set of noisy latents with text conditioning, along with our proposed control conditioning.

To align the time-varying control signals with the latents from our text-to-sound DiT, the con-

trol signals must be extracted at the same frame rate as the audio VAE latents or interpolated to this

frame rate. This allows us to perform a simple conditioning method: condition a latent diffusion

model ϵθ by simply adding a linear projection layer from our control signals to the noisy latents

used as input to the diffusion model. Since these time-varying control signals are highly localized

to their given time frame, a simple linear layer suffices to incorporate each time-varying signal as

conditioning to the model.

Given the noisy latent vector sequence z ∈ RD×N that is used as input to a latent diffusion

model ϵθ with embedding dimension D and sequence length N , we introduce our time-varying

conditioning signal cctrl ∈ RK×N with dimension K and sequence length N to the latent z by

applying a trainable linear projection layer pθ(cctrl) ∈ RD×N to the input conditioning, and adding

the result directly to the latents used as input to the diffusion model: zctrl = pθ(cctrl) + z. We can

repeat this process for any number of time-varying control signals that we’d like to condition our

latent diffusion model.

During fine-tuning, the loss configuration for the model does not change from the one used in

original training; that is, we do not apply any reconstruction losses for the control curves them-

selves, removing the need to pass through the VAE decoder during fine-tuning. Despite not mea-

suring loss on the control signals, providing them as input during fine-tuning is sufficient for the

model to condition generation on them. As a result, these signals become useful for control at

inference time. To ensure we can generate without requiring all the control signals, we perform

dropout during fine tuning on the control signals by zero-ing out the control embeddings pθ(cctrl)

before they are added to the diffusion model’s latents z. We drop each control signal (as well as the

text conditioning) individually with a 20% probability, with an added 20% probability of dropping
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out all signals together. Likewise, these signals can be dropped out at inference if a user wishes to

control only one or two controls while omitting others.

At inference time, we follow the two-conditioning classifier-free guidance setup described in

[144]. We use guidance scales sctrl and stext, which can be used to trade off the guidance strength

for the control signal conditioning and text conditioning, respectively. We find that using a single

guidance scale for all three control signals together (sctrl) is a sufficient approach, but future work

may explore the effect of applying guidance strengths to each time-varying control independently

of each other. Anecdotally, we find that setting stext to a value of 5 and sctrl to 1 achieves results

with good text adherence while following the contour provided in the sonic imitation controls.

3.3.3 Creating sketchlike controls via control-rate filtering

Even though the human voice is remarkable at imitating sounds, there will still be a mismatch

between the control signals of the target sound and the control signals of the vocal imitation. To

overcome this issue, we propose a technique to make the controls sketchlike by applying random

median filters to the control signals at different window sizes (1-25 control frames) before they are

used as input to the model. This filtering technique can help mitigate the mismatch in temporal

specificity between the vocal imitation and target sound and help the model produce higher-quality

sounds from sketchlike vocal imitations. Our experiments show that during inference, a sound

artist is free to adjust the control rate of their input control signals, giving them an interpretable

control over the trade-off between text-prompt adherence and fine temporal precision.

3.4 Experimental Design

Our experiments evaluate Sketch2Sound’s ability to synthesize high-quality sounds from vocal

imitations. Except for the text-only baseline (which doesn’t need fine-tuning), we fine-tune every

model for 40k steps with the same configuration used for training. For all fine-tunings, we use the

text-only baseline as the starting checkpoint.

The main dataset used for evaluation is VimSketch [145], which consists of approximately
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12k vocal imitations, each with a text description and reference sound. For each model variant,

we generate 10k examples with durations of up to 5 seconds using the vocal imitation and text

description as conditioning. We evaluate Sketch2Sound along the following characteristics:

Audio Quality: To measure a model’s ability to synthesize high-quality sound effects, we

compute the Frechét Audio Distance (FAD) [146] using a proprietary dataset of 40k high-quality

sound effects as the reference set, and 10k sounds generated from vocal imitations from the VimS-

ketch dataset as the evaluation set, as suggested by [147]. We report the FAD for VGGish [148]

and LAION-CLAP [149] embeddings. Text Adherence: We measure how well our generated

audio adheres to the target text prompt by computing the CLAP embedding cosine similarity [149]

between audio generated from a sonic imitation and the target text prompt for every example.

Control Signal Adherence: Finally, to measure the adherence of the generated audio to the

vocal imitations, we measure the error (L1) between the input and generated control signals (loud-

ness, centroid, pitch) only on non-silent (loudness > −40dB) frames. We measure loudness error

in dBFS RMS and centroid error in semitones (st). We report the following pitch metrics: pitch

error (st), chroma error (from the predicted pitch), and periodicity error, as estimated by torchcrepe

[143]. We only measure pitch and chroma error on voiced frames, i.e., where the periodicity pre-

dicted by torchcrepe is greater than a threshold of 0.5 for both the vocal imitation and the model

output.

3.5 Experiments

3.5.1 Control signals

First, we validate that Sketch2Sound can synthesize sounds from a reference vocal imitation and

a text prompt while achieving a competitive audio quality, text adherence, and adherence to the

vocal imitation. We fine-tune three models, each with a different set of control signals (loudness

only, loudness+centroid, loudness+centroid+pitch), and compare the performance of these models,

along with a text-only baseline, using the metrics discussed in Section 3.4. For all model variants,

we use a fixed median filter window size of 10 at inference.
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3.5.2 Sketch type ablation

To observe the effect of our random median filtering as a way of creating sketchlike controls, we

compare our approach to a no-filter baseline, as well as an alternative approach using low-pass

filters instead of median filters to remove fine temporal detail from the controls during training.

We train our model with random median filters with window sizes ranging between 1 and 25

control frames (1 frame = 25 ms). At inference, we use a fixed median filter size of 10. For our

low-pass filter approach, we apply random low-pass filters ranging from 5Hz-20Hz and use a fixed

cutoff (10Hz) at inference. Likewise, we compare each variant in this experiment in terms of audio

quality, text and control adherence, following Section 3.4.

3.5.3 Inference-time control rates

To verify whether our median filtering approach allows for an inference-time trade-off between

text adherence and fine-temporal control, we observe the performance of our model trained with

random median filters at different inference-time temporal resolutions. Specifically, we generate

samples using our model at different inference-time median filter sizes of {1, 5, 10, 15, 20, 25}

observe their performance on the metrics (Section 3.4).

Table 3.1: Control Signal Evaluation and Sketch Type Ablation (Control Adherence).

Control Signal Sketch Type Control Adherence (Error) ↓

RMS (dB) Centroid (st) Pitch (st) Chroma (st)

control signals

text-only median (sz 10) 13.41 10.34 13.91 2.96

loudness (ldns) median (sz 10) 3.88 10.37 12.45 2.96

ldns+centroid median (sz 10) 3.60 4.39 11.17 2.87

ldns+centroid+pitch (ours) median (sz 10) 3.60 4.43 1.49 0.48

sketch types
ldns+centroid+pitch low pass 2.19 3.33 0.44 0.23

ldns+centroid+pitch no filters 1.87 3.21 0.45 0.21

59



Table 3.2: Control Signal Evaluation and Sketch Type Ablation (Text Adherence and Audio Qual-
ity).

Control Signal Sketch Type Text Adherence (CLAP ↑) Audio Quality (FAD) ↓

VGGish CLAP

control signals

text-only median (sz 10) 0.273 2.57 0.270

loudness (ldns) median (sz 10) 0.230 2.69 0.296

ldns+centroid median (sz 10) 0.219 2.67 0.306

ldns+centroid+pitch (ours) median (sz 10) 0.211 2.51 0.312

sketch types
ldns+centroid+pitch low pass 0.166 3.30 0.363

ldns+centroid+pitch no filters 0.152 3.53 0.379

3.6 Results and Discussion

3.6.1 Control signals

Tables 3.1 and 3.2 validate Sketch2Sound’s ability to synthesize sounds using control signals ex-

tracted from a vocal imitation + a text prompt while achieving comparable audio quality to a

text-only baseline. We incrementally add each control (loudness, centroid, pitch), and observe

each model’s performance in terms of text adherence (CLAP score), control signal adherence, and

audio quality (FAD).

Conditioning a model on a time-varying control signal (e.g., loudness, centroid or pitch) sig-

nificantly improves the adherence to that control signal compared to when the model is not condi-

tioned on that control. Since loudness, centroid, and pitch are often correlated in natural sounds,

incorporating a single conditioning (i.e., loudness) also slightly improves the control adherence for

other control signals.

In terms of text adherence and audio quality, introducing control signals produces a slight

decrease in audio quality and text adherence. Empirically, we find that this difference is near

negligible when compared to the text-only baseline in most cases. We also find that the quality of

the generated audio can be a function of how well the user imitates the characteristics of the target
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Figure 3.2: At inference, larger median filters are more sketchlike and can lead to higher audio
quality, while smaller filters are more precise and may lead to lower audio quality if the vocal
imitations aren’t precise enough, giving the sound artist a choice over this trade-off.

sound: better-performed vocal imitations lead to higher-quality generated sound effects.

3.6.2 Sketch type ablation

Tables 3.1 and 3.2 show that our median filter method makes Sketch2Sound robust to generating

high-quality sound effects from sketchlike vocal imitation control signals, improving the audio

quality and text adherence over a no-filter baseline and a low-pass method. Notably, our me-

dian filter method is able to achieve a higher CLAP score (text adherence) and lower FAD (audio

quality), while trading off the control adherence to vocal imitations. This trade-off, where low-

ering the control adherence to vocal imitations improves the audio quality is more desirable

than a strict adherence to the controls since most vocal imitations cannot perfectly mimic

the fine temporal behavior of target sounds. Generating sounds that exactly follow the vocal
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imitation controls (i.e. “no filtering”) results in audio that does not sound like the text, but

“speechlike”.

3.6.3 Inference-time control rates

Our control-rate filtering method lets a sound artist use different-size median filters at inference

time, allowing users to choose the desired amount of temporal detail needed for a particular voice-

to-sound example. The results in Figure 2 show that Sketch2Sound can be used with different

control-rate resolutions at inference time by using median filters of different sizes. Smaller filters

achieve higher control adherence, at the cost of a lower audio quality and text adherence. We

hypothesize that the decrease in text adherence and audio quality is due to the mismatch between

vocal control signals and the target control signals suitable for generating Foley sounds. However,

this flexibility allows one to use smaller filters (i.e., higher temporal resolution) when the vocal

imitations are well-performed, and larger filters (i.e., lower temporal resolution) when the vocal

imitations are impossible to precisely imitatate with the human voice.

3.6.4 The semantics of control curves are implicitly modeled

[bird] [bird] [bird] [snare] [snare][bass] [bass] [bass][bass]

sketch2sound (output)

sonic imitation (input)

sketch2sound (output)

prompt: "forest ambience" prompt: "bass drum, snare drum"

sonic imitation (input)

Figure 3.3: (left) When prompted with “forest ambience”, bursts of loudness in the controls be-
come of birds without prompting the model to do so. (right) With “bass drum, snare drum”, the
model places snares in unpitched areas and bass drums in pitched areas.

We find that the control signals can manipulate the semantics of the generated signals. For

example, using the text prompt “forest ambience” with a sonic imitation containing random bursts
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of loudness in it, we can synthesize bird sounds into those loudness bursts (see Figure 3), with-

out having to use the prompt “birds” at all. The model follows the correlations between bursts of

loudness and the presence of birds in recordings of forest ambience in the training data, and so gen-

erates bird sounds when prompted with loudness bursts in a “forest ambience” prompt. Likewise,

with the prompt “snare drum, bass drum, drum beat”, performing a sonic imitation with a series of

pitched (bass drum) and unpitched (snare drum) sounds will successfully apply bass drum sounds

on pitched regions, and snare drum on unpitched regions. Both of these examples are available on

our accompanying website.

3.6.5 Limitations

We found that the centroid control tends to entangle the room tone of the input sonic imitation onto

the generated audio. We believe this is because the room tone of the input audio is encoded by the

centroid when no sound events are occurring in the input audio. A potential solution is to drop the

controls when the signal is quiet, though this may fail with overcompressed inputs or loud room

tones.
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CHAPTER 4

TWO-STAGE AUDIO GENERATION SYSTEMS AND MUSICAL PRACTICE

4.1 Introduction

Chapters 2 and 3 discussed the technical design of two expressive and controllable generative

modeling systems for creating sounds via sonic gestures. However, little has been said (in this

dissertation and in the broader literature on large-scale generative music modelling) about how

two-stage audio generation systems fit into an existing musical tradition or performance practice.

Nor has there been sustained exploration on how these systems could facilitate new and compelling

creative interactions beyond casual, consumer-facing interfaces like Suno1’s text-to-music (and

more recently, MusicFX DJ2).

This chapter discusses musical instruments and their inextricable entanglement to their sur-

rounding musical practice. I will also discuss the role of the instrument maker as “the first player”

of a new musical instrument, and how engaging in a mixed creative and research practice is a

powerful way to evaluate technical advancements and seek new technical and creative directions.

I will briefly overview of the aesthetics of Experimental AI music, and discuss the interactional

capabilities of generative AI musical instruments and co-creation systems in the context of Curtis

Roads’ time scales of music [150]. This provides the necessary background material required for

Chapter 5, the neural tape loop: a new generative musical meta-instrument.

4.2 Why situate within a musical practice

Two-stage generative models, such as acoustic token prediction models (Chapter 2) or acoustic

latent diffusion models (Chapter 3), require unprecedentedly large amounts of training data and

1https://suno.com
2https://labs.google/fx/tools/music-fx-dj
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compute resources. Thus, these systems are mostly developed by corporations3 looking to build

products for “everyone” – that is, casual consumers, not musicians or artists.

The generated outputs of a model might check all the idiomatic and stylistic boxes from an

auditory, perceptual, harmonic, rhythmic and structural perspective – but they lack the social,

embodied, and historical context that defines a genre. Musical genre is not just about sonic re-

semblance or being able to create new chords, melodies, and rhythms within a particular idiom

[todo] – it’s about shared practices, gestures, lineages, participation, and discourse within an artis-

tic community [40]. A generative music co-creation system’s musical validity cannot be solely

established by the quality of the audio it produces or the ease of interaction, but by how,

where, with whom and why it is used. For example, although a system like MusicFX DJ is tech-

nically capable of generating genre-specific outputs (e.g., blues), you wouldn’t bring MusicFX DJ

to a blues jam session.

Generative models, like other musical instruments, do not exist in a void. They are inseparable

from their contexts – musical, cultural, social, aesthetic – and the traditions in which they are de-

ployed [14]. The aesthetics of a musical style are often a reflection of the affordances of the musical

instruments used to make that music. At the same time, a sound artist (musician, instrument-maker,

or both) shapes and transforms these instruments to accommodate new expressive needs, enabling

deeper and more nuanced engagement with a technique, expanding a particular style, or branching

off to a new one.

This pattern can be seen across history. Musical instruments built upon the same core sound-

producing system, like a set of strings stretched over a resonating body, have evolved into highly

distinct instruments (e.g., violin, oud, steel string guitar, nylon string guitar, sitar, zhongruan, cua-

tro puertorriqueño, cuatro venezolano, requinto, bajo sexto, electric guitar, to name a few). These

variations on the core system have emerged over large periods of time, from a mixture of differ-

ent sonic goals and an ongoing negotiation between the affordances of the core sound-production

system, the physical materials available as well as the aesthetic values of the surrounding cultural

3suno, udio, musicfx dj
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context.

The aesthetic content of music is tied to the technical affordances of the instruments that pro-

duce it: what an instrument makes easy, difficult, or impossible directly shapes the kinds of musical

idioms that emerge through it. The ways in which these technical affordances create particular aes-

thetic outcomes are thus worth inquiring into.

For example, consider the case of the electric guitar and rock music. The electric guitar was

first developed as a technical solution to amplifying a guitar to play with a large live band [151].

However, the technical mechanisms used to amplify said guitar had aesthetic implications of their

own – the (originally unwanted) distortion produced by early vacuum tube guitar amplifiers was

quickly adopted by artists for its aesthetics, eventually leading to the now ubiquitious sound of

overdriven guitar, particularly popular in rock music and its deriving styles. Overdrive impacted

the way electric guitarists played their instruments: for instance, overdrive makes chords with

complex intervals sound noisy or muddy due to intermodulation distortion [152]. The phenomenon

of intermodulation distortion led to the establishment of power chords (made up of simple root-

fifth intervals) as arguably the main pillar of rhythm guitar in rock music. It is thus undeniable that

the aesthetic qualities implied by the electric guitar and its underlying amplification system were

of great influence on rock music.

In a similar way, the magnetic tape system served as a foundational technology that gave rise

to a myriad of diverse musical practices beyond simple storage and recall of sound waves. Pierre

Schaeffer, both a composer and engineer, is a pioneer of the tape splicing, looping, stretching,

and pitch shifting techniques that came to characterize Musique Concrète, an experimental music

developed in the late 1940s and 50s. Schaeffer’s experimental work with Concrète in the 1950s

explored the tape manipulation techniques that later adapted, matured, and spread to popular music

in the 1960s and 1970s and later into the digital age in the 1980s, eventually evolving into an

entirely new family of musical instruments that are now ubiquitous through many genres of popular

music, called “samplers”.

Experimental music can function as a creative testbed: a space for exploring new instrumental
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possibilities and aesthetic frameworks.

4.3 Musicmakers and their instruments

Musicians and their musical instruments have complex, entangled relationships that require more

nuanced design frameworks than the traditional device-user framing associated with HCI research.

Rodger et al. [14] point out that viewing a musical instrument (or potentially, a co-creative gener-

ative musicmaking system, if you will) as a “device” and the performer as a “user” carrying out a

functional task has many limitations when designing (and evaluating) the musical instrument. The

relationship between a human and their musical instrument is not as simple: framing a musical

instrument as a device with an intended use (and thus evaluating it based on how well it carries out

that intended use) does not account for the many possible unintended uses of the instrument. A

great example is the use of extended techniques, like the col legno technique associated with bowed

string instruments [14], which dates back to at least the 17th century [153]. A design framework

based on a device-user view of co-creative musicmaking systems could discourage the develop-

ment of techniques beyond those intended by the original instrument maker, even though these

new emergent techniques could lead to the development of new creative practices of great artistic

value. Rodger et al. think of a musical instrument and its performer as forming part of an ecology:

the musical instrument is a set of affordances that may change and evolve depending on the per-

former’s agential effectivities, skillful behaviors, background, and ongoing cultural and aesthetic

context. It is impossible to evaluate the instrument in a way that could generalize to every musi-

cian and performer across a range of musical styles. Instead, evaluating the instrument becomes

a matter of specificities, where the dimensions of evaluation are dependent on specificities like a

particular musician’s style, a particular playing context, or any other aspects of the surrounding

ecology.

Given that creating a “generalized”, “democratized” musical instrument for everyone is an

ill-formed goal (as stated in Chapter 1), who, then, should the instrument-maker design their in-

strument for?
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I believe that the first player of any new musical instrument should be its maker. An instrument-

maker who is aesthetically invested in the instrument they’re building is more likely to shape it

towards artistically compelling outcomes. The de-facto behavior for most engineers and scientific

researchers is to generalize – that is, to build systems and interfaces that serve the majority of

possible cases. While this can be a powerful approach when applied to many practical problems

and tasks in audio signal processing (like speech denoising), when applied to musical instrument

design, this approach risks losing the specificities that make a musical instrument meaningful for

a specific musical community [14]. Cook [154] holds that ‘attempting to build a “super instru-

ment” with no specific musical composition to directly drive the project yields interesting research

questions, but with no real product or future direction’. In music, what works ”for everyone” of-

ten works for no one: designing an instrument without a clear artistic context in mind can lead to

systems that are technically impressive but musically inert.

As articulated by Jordà [155], Digital luthierie, the craft of creating digital musical instruments,

is similar to music creation. The process of creating a digital musical instrument unravels as more

than an art than a science [154], with “messy unfoldings” and non-linear trajectories throughout

the process [156]. George Lewis states: “Musical computer programs, like any texts, are not

‘objective’ or ‘universal’, but instead represent the particular ideas of their creators.” [157]. The

technical affordances of musical instruments significantly shape their aesthetic possibilities by

constraining and directing the performer’s potential musical actions. Therefore, instrument makers

should remain attentive to the aesthetic dimensions of their instruments as they evolve. Engaging

in musical composition and performance with the instrument-in-progress is an optimal way for

the instrument maker to be keen on the aesthetics of the instrument: an individual’s full-fledged

creative practice may offer deeper insight into an instrument’s expressive capabilities compared

to brief superficial evaluations carried out by a generic population of, say, underpaid Amazon

Mechanical Turk workers.

In the end, musical performance is the ultimate evaluation of a musical instrument design [158].

Thus, researchers in music generation and human-AI co-creation (and their systems) could benefit
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from engaging in a music composition and performance, especially when said musical practice

contributes to a larger aesthetic context.

4.4 Practice-Based Research in Computer Music and Digital Musical Instruments

As both the maker of a new generative musical instrument and a creative practitioner work-

ing within the traditions of experimental music and sound art, I adopt a practice-based research

method: one that consists of treating the act of musical creation itself as a mode of inquiry, allow-

ing aesthetic, historical, technical, engineering and performative dimensions to inform and shape

each other in an ongoing, entangled process.

Bulley and Shain define practice-based research as “an original investigation undertaken in

order to gain new knowledge partly by means of practice and the outcomes of that practice”.

[15]. In practice-based research, a researcher supports their contributions by demonstrating cre-

ative outcomes which may include artefacts (e.g., images, music, designs, models, digital media,

performances, exhibitions, etc.) [15] as well as providing “substantial textual contextualization”

of these outcomes in the form of published materials [159].

The interdisciplinary nature of nime 4 design has allowed the community to adopt diverse re-

search practices since its origins in early computer music: research works in nime have taken the

form of practice-based research, technical reports, theoretical studies, scientific papers or qualita-

tive research [48]. Elblaus et al. [160] argue that nime researchers should “engage more fully with

musical practice and how these interfaces stack up through prolonged use in performance”.

Outside nime, the human-computer interaction (HCI) community engages in a method similar

to practice-based research referred to as autobiographical design [161]. Autobiographical design is

considered useful when the researcher is a genuine user of the system (i.e., the system is based on

the true needs of the researchers). Among the advantages of autobiographical design is that autobi-

ographical design leverages long-term usage to reveal ”big effects” (i.e., the core components that

4Following Gurevich [48], I refer to the international conference on New Interfaces for Musical Expression as
“NIME”. On the other hand, I refer to the craft of new musical instrument design and research on the subject in
general, or the research which predates the conference in the lowercase form “nime”.
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make or break a system), and requires “real” systems as opposed to more sandboxed simulations

present in controlled evaluations [161].

The practitioner-researcher, both a researcher and active practitioner in a professional setting,

undertakes a systematic inquiry that is relevant to their practice and has a direct impact on the prac-

tice itself [162]. The practitioner-researcher identifies “researchable problems raised in practice,

and responds through practice” [163]. In the context of the arts, the practice-based researcher con-

ducts their research through art-making: “they do not wish to suspend their creative work or allow

it to become separate from, or sub-ordinate to, the research activity” [164]. Nime practitioner-

researchers often posses a wide range of skills spanning music composition and performance, soft-

ware development, electrical engineering and interaction design. [165]. Luke Dahl writes: ”We

cannot divorce our design practice from its application in musical performance, for it is through

performance that our ideas, embodied as design prototypes, become testable” [166].

Practice-based research may extend beyond the scope of technical reports or scientific papers.

Practice-based works engage with more rounded and situated forms of inquiry – sometimes encom-

passing historical, critical, cultural, political, and aesthetic dimensions. Gurevich [48] points out

that the early written works written by pioneering nime artists like Gordon Mumma, Daphne Oram,

David Rosenboom and Michel Waisvisz (proto-NIMErs) partook in practice-based research: their

works were largely concerened with the “critical, theoretical and historical underpinnings of their

practice, as well as reflective accounts of their experiments intented to catalyze future creative

endeavors”. George Lewis, another trailblazer in modern nime design, writes about his instru-

ment/composition Voyager: “This work, which is one of my most widely performed compositions,

deals with the nature of music and, in particular, the processes by which improvising musicians

produce it. These questions can encompass not only technological or music-theoretical interests

but philosophical, political, cultural and social concerns as well. [157]”

Contemporary “state-of-the-art” co-creative AI music systems come from research commu-

nities primarily rooted in machine learning research and signal processing. These systems thus

reflect the values of these scientific research communities, often prioritizing general usability,
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scalability, and novelty of output over aesthetic depth or performative nuance. In contrast, the

NIME community has fostered interdisciplinary design strategies that embed musical practice and

embodied interaction into the research process itself. I argue that co-creative AI research would

greatly benefit from adopting practice-based research approaches — especially those centered on

iterative performance-based evaluation, practitioner-researcher entanglement, and ethical ecolog-

ical deployment within musical communities. Such approaches could lead to more compelling,

situated instruments that enable not just the generation of perceptually convincing sound waves,

but the formation of new musical practices and cultures.

4.5 Experimental AI Music and Sonic Hauntology

I use the term experimental AI music to disambiguate the experimental practice rooted in computer

music that encompasses generative musical instrument design and composition (experimental AI

music) from the now-prevalent commercial artefacts created by text-to-music products offered by

large corporations as a way to facilitate “accessible” musicmaking (AI music).

Aesthetically, experimental AI music and sound art pieces are characterized by their eerie,

liminal, and uncanny qualities. Experimental AI music works often create interplay between per-

ceptually ambiguous sounds and concepts.

Rubinstein [167] argues that [experimental] AI music is an inherent successor to the brief sonic

hauntology movement of the 2000s, which consisted of artists like The Advisory Circle, William

Basinski, The Caretaker and the Ghost Box record label. Sonic hauntologists employed techniques

like mixing, collaging,, and manipulated sounds and textures evocative of the mid-20th century,

often transforming these into eerie, dreamlike textures and sonic landscapes.

Experimental AI music works exhibit these hauntological qualities, further intensifying them

through the opacity and temporal disjunctions inherent to generative models. Rubinstein notes:

”Rather than an alienlike sonic object that radically breaks musical tradition, AI music offers an

uncanny recapitulation of it instead” [167]. Sonic Hauntology (and experimental AI music) differ

from postmodernism in that they complement ontology rather than oppose it [168]: Experimen-
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tal AI music repurposes the technologies built for “hyper-commodified stupefaction” imposed by

postmodernity and instead provides an ”alternative to late capitalist culture’s shallow remixes of

the sonic past”, undermining, rather than reaffirming, its innocuous bricolage of the past [167].

The term “AI hauntology” [168] is used to describe an artistic practice where generative mod-

els are used to create “music temporal uncertanties and sonic anachronisms as direct emanations

of the algorithm’s inner workings”. Experimental AI artworks address political, technical and aes-

thetic narratives that comment on “ghosts” of different kinds – critically reframing a technology

that is often seen as “the embodiment of technocapitalist accelerationism and greed for power

centralization” [168].

4.6 Generative nimes

To date, the most commonly used generative sound model in musical instruments is RAVE, by

Caillon et al. [12]. Built by the ACIDS lab at IRCAM, RAVE models have become the most

popular choice for experimental musicians and sound artists working with generative models due

to its ability to create sound in realtime on consumer hardware. RAVE is also well-integrated into

computer music environments like MAX/MSP and PureData using the nn-tilde package 5, as well

as in VSTs like NeuTone 6. I refer the reader to Chapter 1 for more on RAVE.

Moisés Horta Valenzuela (Hexorcismos) built semilla.ai [18], a musical instrument that con-

nects RAVE latent spaces to ancient Mesoamerican divination through “maı́z throwing” technique.

Shepardson and Magnusson introduced the Living Looper [90], a live looper that records RAVE

latent vectors to create “living” versions of the guitar loops with the hope of creating a co-creative

instrument with agential behavior. Visi’s Sophtar[21] is a tabletop string instrument that incor-

porates self-playing modes involving feedback and RAVE model processing. Privato et al. built

Stacco [19], a musical instrument that leverages magnetic interactions to drive RAVE models.

NeuroRack7 leverages a controllable RAVE model [92] to situate a generative audio synthesizer in

5https://github.com/acids-ircam/nn_tilde
6https://neutone.ai/
7https://github.com/acids-ircam/neurorack
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the context of modular synthesis, allowing for the model’s control signals to be manipulated via

control voltage (CV) signals.

4.7 AI music co-creation systems and the time scales of music

Music is a time-based art form. Our experience of sonic phenomena is shaped by the temporal

scale in which it occurs. We perceive and interact with sounds at different time scales. Thus,

different time scales offer different creative possibilities.

Curtis Roads offers a comprehensive continuum of the time scales of music [150], spanning

durations from the infinite to the infinitesimal. Roads describes 9 time scales of music: the infinite

(a theoretical infinite time span), supra (a scale beyond the duration of an individual composition,

spanning the duration of an artistic movement, for example), macro (the time scale of musical

form, normally measuring minutes or hours), meso (divisions of form, phrase structures of differ-

ent sizes, measured in minutes or seconds), sound object (the concept of a ‘note’, generalized to

include complex and mutating sound events, ranging from a fraction of a second to several sec-

onds), micro (sound particles stretching down to the threshold of auditory perception, measured in

milliseconds) , sample (individual samples in a digital audio system, measured in microseconds),

subsample (events on a time scale too brief to be recorded or perceived, measured in nanoseconds)

, and infinitesimal (the theoretical time span of a delta function).

Of special relevance to this dissertation are the macro, meso, sound object, and micro levels.

Especially with modern music technology, musical instruments (and other musicmaking interfaces)

are able to operate within different time scales of musical interaction. Like Roads, we will be con-

sidering both how these time scales affect musical form itself, but how musical instrument design

can shape how we interact with musical instruments, generative models, and other musicmaking

systems at different time scales.

Figure 4.1 shows a diagram (a) generative music co-creation systems and (b) musical instru-

ments, organized into their respective time scale of interaction. This work borrows Curtis Roads’

classification of time scales of musical structure [150] and reframes it to consider the time scales of
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Figure 4.1: Several generative music co-creation systems, musical instruments, and musical inter-
actions, organized into their respective time scales of music. Chapter 5’s contribution, the neu-
ral tape loop, generates meso-scale musical structures. macro-scale co-creation systems (Suno)
are too detached from the music – they afford casual musicmaking experiences not suitable for a
sound artist or instrumentalist. Sound object-scale co-creation systems (RAVE) offer an immediate
sound-producing interaction, similar to traditional acoustic instruments. A meso-scale co-creation
system (neural tape loop) sits in between: it leverages two-stage generative models to generate
longer musical structures (up to 10 seconds) while remaining interactive enough to be used in live
performance and art installations.
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musical interaction, examining the level of involvement of a musician or sound artist in a particular

interaction.

Now, let us consider generative AI models (and how we interact with them) in the context of

Road’s time scales of music. RAVE models are relatively light models with a short temporal con-

text, typically trained on a unitimbral distribution of sounds for best effect (e.g. “human voices”,

“violins”, “recordings of water”, etc.) on a 3̃ second context. From an interaction standpoint,

RAVE instruments are mostly capable of immediate sound-producing interactions (by directly ma-

nipulating latent dimensions with a controller, e.g. Stacco [19] and semilla [18]), or via timbre

transfer.

Using Road’s organization of the time scales of music [150], I would classify that RAVE’s

generative properties primarily operate at the sound object level – the basic unit of musical struc-

ture. The sound object time scale generalizes “ the traditional concept of note to include complex

and mutating sound events on a time scale ranging from a fraction of a second to several seconds”

[150]. RAVE models (without prior, which is the most commonly used setup in nimes) are not

generative at the meso level: they are not able to generate coherent sequences of sound objects

by themselves, leaving the arrangement and transfiguration of these mesostructures up to the per-

former and their controller (in the case of Stacco and Semilla) or their instrument (in the case

RAVE timbre-transfer systems).

Commercial AI music co-creation systems, on the other hand, involve the musicker at larger

time scales. Products like Suno, Udio and Stable Audio operate at the macro level, where entire

musical compositions are made with little temporal intervention by the sound artist. The interaction

is usually in form of a text-prompt that is used to generate a full-form track (roughly 2-15min). At

this level, the musicmaking interaction is at a curatorial level, where the majority of the interaction

time is spent listening to generated tracks and curating them in the form of playlists or DJ sets.

Full-form music generation systems have fostered a new community of Prompt Jockeys: DJs that

mix AI music generated live instead of “real”, previously existing music 8. Another example is

8see https://youtu.be/_fpnAHoRSqU
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Google’s MusicFX DJ, which allows one to interact at longer durations of the meso level as well

as the macro level, allowing one to create music by typing and mixing short text-to-music prompts.

In the next chapter, I’ll discuss the neural tape loop, a generative musical instrument based

on masked acoustic token modeling, a two-stage generative modelling approach for sound. Unlike

RAVE, a generative musical instrument based on a masked acoustic token modeling cannot afford

real-time sound-producing interactions due to its non-causal nature, nor can it produce full-form

music tracks with a single premeditated command (like Suno): instead, its primary time scale of

interest for musical interaction lies at the meso level, creating local rhythmic patterns of sound ob-

jects, pitch and timbre melodies, establishing themes, variations and textural interplay. This places

the neural tape loop on the same time scale of interaction as sequencers, loopers, modular syn-

thesizers, delays, etc. According to Roads, the meso level is extremely important in composition,

for it is at the meso level where the “sequences, combinations and transmutations that constitute

musical ideas unfold”.

76



CHAPTER 5

THE NEURAL TAPE LOOP

Figure 5.1: unloop, a digital musical instrument built with a neural tape loop. unloop equips
a digital looper with a masked acoustic token model so that the loop “never repeats itself”: as
the recorded loop plays back over and over again, the original contents of the recorded loop are
transformed to reflect a generative model’s sound palette. The transformation can be perceptible at
both the sound-object scale (timbre transfer) or at the meso scale (rhythm/phrase structure transfer)

, depending on the micro-inpainting controls used.

Generative models are not neutral entities existing in a vacuum. They are shaped by the data

they are trained on, the infrastructures that build them, and the ideologies that guide their design

and use. But they do not have to be instruments of a commodified pastiche. If we, as makers of
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generative musical systems and instruments, engage with the systems we make critically, aestheti-

cally, and performatively, we can make generative models that engender a new musical tradition –

one that values humanness, experimentation, embodiment, and expressiveness.

This chapter introduces the neural tape loop, a co-creative generative musical meta-instrument

based on masked acoustic token models (MATM) and their musical affordances. Through practice-

based research, I show that the neural tape loop facilitates novel musicmaking techniques and inter-

actions that can be deployed in different scenarios belonging to experimental music and the sound

arts. Specifically, this chapter presents four original works – a mono fixed media composition, a

comprovisation (composed improvisation [169]), a multichannel fixed media composition, and a

quadraphonic interactive sound installation – each exploring and introducing a musical technique

enabled by masked acoustic token models.

I propose three new techniques for playing a masked acoustic token model: micro-inpainting,

fed back iterative regeneration (theseus sampling), and generative time stretching, each of

which enable new musical interactions. I emphasize the importance of enabling sound artists to

use their own sound collections when working with generative models, and discuss my use of

an existing sound palette fine-tuning technique. I employ these techniques in my own original

compositions, performances and sound installations, as well as contextualize them within the ex-

perimental and computer music traditions. I show how these techniques, together, allow one to

use the voice as the interface for the generative co-creation system, allowing one to create morphs

between one’s voice and any desired sound palette (Section 5.4.3).

The work presented here aims to extend the lineage and discourse of both experimental music

and generative audio modelling by situating the new wave of two-stage generative “AI” mod-

els within a broader musical ecology - in this case, one shaped by historical practices of sonic

hauntology, tape manipulation, looping, and feedback, and sustained by communities invested in

experimental sound, improvisation, and process-based music.

The neural tape loop is a co-creative musical meta-instrument [170]. The neural tape loop

expands on the work of VampNet [16] and reframes the masked acoustic token modeling (MATM)
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system as a meta-instrument [170] from which musical instruments, sound installations, audio

processing interfaces, and other musicking [40] interactions can be built.

In the neural tape loop, I introduce new techniques that leverage the affordances of a masked

acoustic token modelling system to transform an input sound from its input distribution (e.g.

‘voice’) to the model’s trained distribution (e.g. ‘machines’). The model may be fine-tuned to

match a sound artist’s desired sound distribution by letting the artist provide a relatively small

collection of sounds (in the order of 5 minutes to 12 hours), referred to as a sound palette.

By employing different masking techniques (micro-inpainting, theseus sampling, generative

time-stretching, see Section 5.2), a sound artist may perform these transformations at perceptually

different time scales (meso and sound-object, see section 4.7) [150]. For example, with a neural

tape loop, one could employ a transformation at sound-object level, resulting in a timbre transfer-

like transformation. One could also transform at the meso level, creating structural changes to the

input sound by modifying a rhythm or introducing/omitting sound objects from the acoustic token

sequence.

While I focus on my work with VampNet, these techniques can be applied to any generative

model capable of performing masked acoustic token modeling or discrete diffusion.

I frame the neural tape loop as a meta-instrument: an instrument from which other instruments

can be built [170]. While several interfaces have been built for the neural tape loop (see the looper

“unloop”, discussed in section 5.4.2), the following section discusses techniques applicable to the

masked acoustic token modeling system regardless of its front-facing interface. This gives us the

flexibility to create different instruments from the neural tape loop – like loopers (section 5.4.2),

DAW-extensions (section 5.4.3), interactive sound installations (section 5.4.4), and even samplers

(future work!).

5.1 Sound palette fine-tuning

All of the acoustic token manipulation techniques introduced in this chapter are most effective

when an artist has the power to fine-tune their generative model to their own sound palette: a
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bespoke collection of sound recordings for the neural tape loop to model.

While magnetic tape (and traditional digital audio buffers) contain explicitly defined sounds in

them, an acoustic token buffer can represent a learned generative distribution of sounds which can

then materialize as different sound structures according to the model’s learned distribution. New

sounds can be created by processing masked acoustic token prompts created from input sound

queries by performing inference with a masked acoustic token model like VampNet[16]. By letting

individual sound artists bring their own sound palette, we can give the sound artist a great deal of

expressive power over the model.

Enabling artists to bring their own sound palette to a pretrained generative model like VampNet

encourages a small data mindset (which enables greater human influence in a generative AI creative

context [171]) while leveraging the expressive power of two-stage generative models.

From a technical standpoint, I enable sound palette fine-tuning with a masked acoustic to-

ken model by employing LoRA [102] fine-tuning on the original VampNet model. This makes

fine-tuning efficient: one can fine-tune a VampNet to follow a custom sound palette on a single

consumer GPU. Fine-tuning is completed typically within a day – with most of the learning done

within the first 2 or 3 hours of fine-tuning, making fine-tuning a model to multiple sound palettes

for a single musical project feasible even when only a single GPU is available.

The size of the target sound palette can vary greatly, from a 5-10 mins (fine-tuned on one or

two songs, or a couple of individual recordings) to 2-12 hours of sounds with a specific style or

texture. Anecdotally, I’ve found that models trained on very small sound palettes (e.g., less than 1

hour of audio) begin to exhibit “overfit” model behavior, by always insisting upon generating this

training material regardless of the input given. This can make it more difficult to perform timbre

and structure transformations on an arbitrary input buffer. However, with small sound palettes,

the model can function as a “generative sampler” of the small sound palette – creating a sequence

of mesostructures from the small sound palette, reconfigured together in non-linear ways (like a

generative infinite jukebox 1).

1https://eternalboxmirror.xyz/jukebox_index.html
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Sound palette fine-tuning makes personalizing large two-stage generative models accessible

to computer musicians who may have access to a single consumer GPU (like a gaming PC). I’ve

included a tool allowing computer-savvy sound artists (i.e., people with basic command line skills

like copying/moving files and launching a python script) fine-tune their own VampNet models in

the open source VampNet repo 2.

5.2 Token Manipulation Techniques

Here, I detail several techniques for creating sonic material and making music with a neural tape

loop, primarily based on acoustic token manipulation, an affordance unique to masked acoustic

token models (MATM).

When employed together with sound palette fine-tuning (Section 5.1), these techniques allow

for powerful and embodied interactions for transforming and manipulating small to medium-sized

collections of sound material, like shaping sound material with one’s voice (Section 5.4.3), or

spatializing a monophonic texture into arbitrarily many channels with a generative effect (Section

5.4.4).

To the best of my knowledge, no other work has introduced these token manipulation tech-

niques. In addition, no one has explored the affordances and aesthetic implications of masked

acoustic token models within the context of a larger creative practice (Section 5.4).

5.2.1 Micro-inpainting

A neural tape loop can be built with any generative model capable of re-generating sound from

a masked (or corrupted, in the case of diffusion models) input. However, in order to perform

diverse kinds of sound transformations resembling timbre transfer, one should be able to configure

the input’s unmasked sections to be very short (a single acoustic token’s approximate duration,

around 20 ms). When contiguous unmasked sections are very short (e.g., 1 token wide, a “sparse”

prompt), the generative process can be thought of as a form of micro-inpainting – inpainting at the

2https://github.com/hugofloresgarcia/vampnet
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microsound3 [150] level – where the conditioning given to the generative model consists of short

bursts of sound particles that contain only partial information about a sound’s structure, timbre,

pitch, etc.

Micro-inpainting allows the generative model to reconstruct an approximation of the missing

information by leveraging its learned training distribution, effectively treating the masked portions

as a blank canvas upon which new sonic features and structures can emerge. The total percent of

masked tokens can be 50-95% of the total acoustic tokens if a meaningful variation of the sound is

to be made. The masked acoustic token model thus synthesizes sounds informed by both the short

unmasked microsound bursts used as conditioning as well as the patterns present in the model’s

learned distribution.

In order to perform micro-inpainting, we must carefully craft a mask for our input buffer that

both contains the appropriate amount of conditioning information from the input audio file while

allowing enough “masked space” for the model to generate. I use techniques based on the prompt-

ing techniques described in VampNet [16]. Because the resulting masks have many more masked

tokens than unmasked tokens, these masking techniques begin by fully masking the entire acous-

tic token buffer, then selectively unmasking tokens according the given criterion. Here, I briefly

re-introduce these unmasking techniques, as well as further elaborate on how different configura-

tions of these masks can have different perceptual (and thus musical) effects on an input buffer of

acoustic tokens.

• Periodic Prompting (Vertical masking): fully masks all tokens, then periodically unmasks

every pth timesteps. Larger values of p leave larger masked portions, allowing the model

more room for generation. p can be any value between 1 and T , where T is the total number

of timesteps in the input acoustic token sequence. For a well-trained model (i.e., a model

fine-tuned on a sufficiently large sound palette, anecdotally 1-2 hours for a unitimbral distri-

bution), values of p = 1 and p = 2 produce perfect and approximate reconstructions of the

input audio, respectively. Values of p ∈ [3, 5] produce a transformation at the sound-object

3refer to section 4.7 for an overview of the time scales of music.
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[150] time scale (i.e., timbre transfer), morphing the perceptual identity of individual sound

objects towards the sound distribution of the trained model. With values of p ∈ [7, 15], the

model begins to exhibit generative behaviors at the meso [150] time scale, introducing new

sound objects into the acoustic token buffer and altering the rhythmic structure. I refer to this

perceptual process as structure transfer, since it results in a transformation of both timbre

and rhythmic structure, altering the sonic mesostructures of the original input.

• Dropout masking: Like vertical unmasking, but timesteps are masked randomly instead of

periodically, which can be useful for leaving larger chunks of space fully masked, where

the model can introduce new sound events. Dropout unmasking can be parametrized with

parameter d ∈ R[0,1], indicating the probablility that any given token in the sequence should

be masked.

• Compression Prompting (Horizontal masking): fully masks all tokens above the nth spec-

ified codebook level, where n ∈ {1, N}, where N is the number of codebooks used by the

VampNet tokenizer model. Lower values of n completely mask more codebook levels, re-

sulting in a removal of timbre at medium levels (roughly 3 < n < 5 for VampNet), and a

complete removal of timbre and pitch at low levels (n < 3).

• Onset-based prompting: like VampNet [16], we can also leverage information about the

input audio to construct sonically-informed masks. Since VampNet’s beat-based prompting

is unsuitable for natural sounds, voice prompts, or free-tempo sound gestures (since it relies

on a beat tracker), this work instead proposes to leverage sound event onsets predicted by a

onset tracker, like the one provided by librosa[172]. Once all of timesteps which contain

onsets have been identified, all of the tokens located at timesteps with a predicted onset

(as well as the surrounding ones, dictated by an onset mask width parameter) will be

unmasked, ensuring that all of the predicted note onsets remain consistent in the generated

output.

Micro-inpainting is the primary performance-time technique used to play with a neural tape

loop: a sound loop can be recorded, micro-inpainted, and played back during a live performance
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or sound installation, as shown in Section 5.4. All of the other techniques that follow (Theseus

sampling and Generative time stretching make use of micro-inpainting.

5.2.2 Theseus sampling

Micro-inpainting is capable of performing sound-object and meso level transformations from the

input sound to the model’s sound palette. However, when very sparse masks with periodic prompts

are used (for example, p > 13), the output sound may be too different from the original sound in

terms of mesostructure, which can lead to the listener feeling as if there is a discontinuity, or a lack

of correspondence between the input and output sound.

I propose a method called Theseus Sampling, which performs sound-object and meso level

transformations by applying micro-inpainting to an acoustic buffer multiple times in an iterative,

feedback manner. With theseus sampling, one can create larger meso level transformations by

applying smaller periodic prompts (roughly p < 13) over multiple feedback steps. By gradually

replacing segments of an input signal across multiple passes, Theseus Sampling allows the model

to retain the broad temporal shape of a sound while continuously rewriting its local content. This

allows the sound artist to craft transformations that range from subtle variations to radical reconfig-

urations. This iterative process where small parts of a whole are all slowly replaced is reminiscent

of the ”Ship of Theseus” paradox, hence the name “theseus sampling”.

While Theseus Sampling seems conceptually similar to a discrete diffusion [74] or an iterative

parallel decoding process [66], each step of a theseus sampling process is a fully-formed output

produced by a masked acoustic token model. Unlike the intermediate outputs in an iterative

parallel decoding scheme, each output in a theseus sampling process may be listened to and used

as sonic material.

Theseus sampling amplifies the effects of micro-inpainting each time the output of the MATM

is fed back to the input. If done with smaller periodic prompts (p < 5), one can create more intense

timbre transfer effects than if done via a single pass of micro-inpainting. A notable example of this
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technique is my open source music processing tool nesquik 4, which uses theseus sampling with

a model fine-tuned on NES music to transform any instrumental music into an “8-bit“ chiptune

rendition of itself.

If a theseus sampling process is repeated indefinitely for a single input, the sequence of all of the

resulting outputs of the model represents a single gradual sound transformation process, where any

input sound can be slowly dematerialized from its original perceptual source into a texture defined

by the model’s sound palette. In section 5.4.4, I discuss token telephone, a sound installation that

exposes the resonant modes of a neural tape loop’s training distribution by revealing a theseus

sampling feedback process in front of the participant.

5.2.3 Generative time stretching

MATMs afford us to time-stretch a piece of audio with an “opinionated”, generative behavior

which both stretches the durations sound objects in a sequence while changing the timbral proper-

ties of these sound objects according to the model’s sound palette. This time-stretching technique,

especially when applied at extreme time-stretching factors of n (like 5, 8, 10, 15, 20), begins to

exhibit generative behaviors: the training material of the model begins to emerge from the masked

spaces in between the original sound events. The aesthetic result is not simply a slower version

of the original sound. Instead, the model begins to generate new sound events in the blank spaces

introduced by the masked tokens, changing the identity of the input sound from the source audio to

the model’s sound palette, all while preserving the grand rhythmic structure of the stretched audio.

To time-stretch a piece of audio with a neural tape loop by an integer factor n, we can insert

n − 1 mask tokens in between every individual token of an input token buffer. For example, to

time-stretch a sound by a factor n = 3, we must insert 3 − 1 = 2 mask tokens in between every

token in the input sequence. This lengthens the input token sequence to n − 1 times its original

length, effectively decoding the original acoustic tokens at a rate given by 1/n.

Note that generative time stretching is different from micro-inpainting in that generative time

4https://hugofloresgarcia.art/nesquik
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stretching inserts new mask tokens in between the input tokens, while micro-inpainting replaces

some of the input tokens with mask tokens. Generative time stretching effectively lengthens the

token sequence ( thus stretching the generated audio). Micro-inpainting simply transforms the

token sequence – the resulting token sequence is the same length as the input.

Since this time-stretching techniques exhibits its most interesting behaviors at very large time-

stretching factors (n > 3), generative time-stretching is best suited as an “offline” technique for

fixed-media compositions, like my original composition for voice and VampNet called world of

mouth. See Section 5.4.3 for a discussion on using generative time-stretching in a fixed-media

composition.

5.3 Interface: unloop

unloop is the primary live performance interface built on top of the neural tape loop. unloop places

a masked acoustic token model in a live looping digital instrument, equipping the looper with

the ability to create generative transformations of the loop as the loop repeats. While looping, a

user can modify the parameters used for performing micro-inpainting and theseus sampling on an

input sound, and can thus create different kinds of generative transformations to the sound, from a

timbre transfer to mesostructure transfer to a full-on unconditional generation. The first two pieces

described in Section 5.4 make use of unloop.

Figure 5.1 shows the unloop user interface (implemented as a Max/MSP patch). The left panel

contains basic looper controls (e.g. loop length, speed, overdub) as well as a toggle (UNLOOP)

to begin the transformation process. Unlike a traditional looper, which contains a single buffer to

record sound into, unloop has two buffers: a wet buffer and a dry buffer. “Real” audio (like a voice

gesture or input loop) is recorded to the dry buffer, which is used as input for the neural tape loop.

Audio generated by the neural tape loop is placed in the wet buffer. A dry/wet parameter allows

the user to mix the original and generated audio together.

With the (UNLOOP) toggle enabled, the contents of the current buffer are immediately sent to

a gradio API server equipped with VampNet, which performs a micro-inpainting transformation
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on the input buffer. The generated buffer is then sent back to the Max patch, which cues the

generated buffer to replace the “wet” buffer once the current loop reaches it’s end. The micro-

inpainting controls (Figure 5.1, top right) allow a user to modify the mask-building parameters

described in section 5.2.1 (micro-inpainting). A set of advanced controls (bottom right) modify

the model’s sampling process, adjusting aspects like each generations’s randomness (temperature,

typical filtering [173], top p). Additionally, one can enable theseus sampling mode by enabling the

feedback toggle in the left panel of the unloop interface. With the feedback toggle on, the

contents of the wet buffer are used as input to the model (instead of the dry buffer). This means

that the model will be recursively feeding into itself, as described by the theseus sampling process

in Section 5.2.2.

While working with the unloop interface for different occassions/performances/compositions,

an issue that kept reoccurring was the interface’s lack of a mask visualization tool. Being unable

to visualize the input mask makes it hard to have a mental model of what the current mask looks

like, especially when mixing the masking parameters described in Section 5.2.1. Though this was

a reocurring issue in most of the creative works described below, I did not formalize this thought

until a discussion with other artistic collaborators (Weilu Ge and Nithya Shikarpur). See a proposed

design guideline in section 5.4.2

5.4 Creative Works

5.4.1 living // dreaming

living // dreaming is my first musical work with a generative model, and the only unpublished piece

referenced in this chapter. This piece deserves mention because it was the first time I attempted

a creative project with the neural tape loop, and it led to the development of the theseus sampling

technique. A recording of living // dreaming is available on YouTube 5.

The theseus sampling technique emerged as a result of a technical implementation bug while

working on an interface for the creative work that would later become living // dreaming. While

5https://www.youtube.com/watch?v=KnBJIgaPZCk
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Figure 5.3: Early version of unloop used for the composition living // dreaming

working on a live looping interface for VampNet, I accidentally set up the looper so that the gen-

erated audio would overwrite the original input audio file. This meant that each subsequent model

generation would use the previous generation as input, enacting a recursive sound transformation

process with VampNet. Though I originally dismissed it as a bug that would only lead to sounds

that were “more distorted than they had to be”, I was surprised to find out that, after a certain

number of these recursive transformations, larger structural changes became perceivable in the

generated loop.

At the time, I was exploring this recursive transformation process with a “debugging” audio

sample – a scratch piece of audio used to debug a musicmaking interface. This “debugging” audio

sample was a short chaotic loop of drum samples randomly sequenced in a 32nd note grid. As

the recursive transformation process ensued, I began to observe the longer-term structural changes

that happened to the original drum loop – the drum loop went from being chaotic to having a more

“traditional” sequence of drum hits. Through more feedback transformations, the drums-only loop

then began to spew out eerie vocal textures and short bursts of harmonic and melodic instruments,

like synthesizers and electric pianos.

When this recursive transformation process was left to its own devices, I observed that the
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original chaotic drum beat contained in the neural tape loop would slowly turn into a quiet, passive

texture of a sustained piano chord – what I imagined would be a “low-entropy” point in the genera-

tive model’s learned distribution. I became quite interested in this recursive, flattening process that

happened when the output of a generative model was fed back into itself, and so I further devel-

oped theseus sampling as a technique for sound transformation with VampNet. theseus sampling

then became instrumental in making my other neural network-based creative works, like world of

mouth and token telephone.

What was originally an implementation error while working on a musical composition later

became a new technique for playing with a neural tape loop. After discovering the theseus sam-

pling phenomenon, I modified the user interface to make it possible to control whether to apply

VampNet in feedforward (“living”, i.e., non-recursive micro-inpainting) or feedback (“dreaming”,

i.e., recursive micro-inpainting or theseus sampling). This allowed me to take an input sound (like

a chaotic drum beat, i.e. nightmare fuel) and playfully transform it in both feedforward (living) and

feedback (dreaming) modes – creating superficial variations as well as “washing out” the original

sound into the generative model’s resonant modes.

5.4.2 confluyo yo

confluyo yo (I converge) is a comprovisation (composed improvisation [169]) for saxophone and

unloop, a live looping interface built with a neural tape loop. In confluyo yo, a saxophonist performs

short modular motifs called “seeds”, which are looped and transformed live using a neural tape loop

system. Through repeated micro-inpainting transformations, the saxophone’s timbre and rhythmic

structure dematerialize (i.e., lose their semantic meaning), slowly converging into textures derived

from generative models of field recordings of Central American birds and industrial machinery.

Confluyo yo was recorded in 2023 in collaboration with Honduran saxophonist Michael Pineda

(saxophone), and performed at the ISMIR 2023 conference by myself (unloop/VampNet) and

Bryan Pardo (saxophone). The studio recording of confluyo yo (recorded with Michael Pineda)
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Figure 5.4: Saxophone score for confluyo yo. This score outlines 5 seed patterns (S1 through S5)
which the player can use as initial material for the structure transfer process. In a performance of
confluyo yo, a performer can play any these seed patterns into a neural tape loop, which is used to
enact a gradual timbre and structure transfer process from the original saxophone gestures to two
generative models trained on central american birds and industrial machines, respectively.
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is available on YouTube 6.

Figure 5.4 shows the original saxophone score for confluyo yo. The improvisation is structured

via seeds, or loose, modular themes that are used as source material for a neural tape loop. Seeds

can be chained together into a sequence, used as the structural foundation for the improvisation.

Seeds S1, S4 and S5 are meant to evoke machine-like sounds from the saxophone, evoking the

sounds of bells, engines, and typewriters from the model trained on the “machines” sound palette,

while seeds S2 and S3 are meant to evoke birdlike sounds. In a performance of confluyo yo, the

saxophonist performs one of the seeds, which is recorded into an unloop, which subsequently

triggers a cascade of transformations of the original seed. unloop, a live looper equipped with

a neural tape loop, creates transformed versions of the seeds, morphing the sound objects and

mesostructures in the original recording to resemble the model’s learned representation of Central

American birds and industrial machines.

on the role of the operator

During a performance, unloop is controlled by the operator: a live performer manipulating both

the looper instrument and its underlying generative tape loop. unloop inherits the affordances of

live looping instruments (like the Tascam PortaStudio or the Boss RC-505): one can selectively

record material into a buffer of sound, which can then be played back in a loop as repetitive

material while the instrumentalist develops new material over the repeated loop. With unloop, the

performer controlling the looper has an additional role: to steer the generative process undergoing

in the neural tape, adjusting the micro-inpainting mask used for each transformation of the recorded

loop. This allows the operator to evolve the loop two ways: by recording new material into the loop,

and, by transforming the recorded material with the underlying generative model. The generative

model can also be used in an “unconditional” mode, which does not need any audio input, filling

the buffer with randomly generated material from the model’s sound palette only.

Functionally, the operator mediates the conversation between the instrumentalist and the gen-

6https://www.youtube.com/watch?v=mcjf2iKf8Nk
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erative model, shaping the transformations that the sound in the neural tape loop undergoes. From

an agency perspective, unloop is a mixed-initiative instrument – combining the premeditations and

sonic interventions of the performer, operator, and generative model into a single resulting sonic

structure.

While perhaps it would have been a more interesting technical challenge to devise a system

capable of fully improvising with the instrumentalist by itself (i.e., forgoing the need of a separate

operator), one cannot ignore the social context surrounding AI’s role in music. There is widespread

concern that AI models are here to “replace” musicians. Instead, the neural tape loop adds a new

performer onstage, one who plays the generative model at the mesostructure level to preserve,

morph, or subvert sonic material. This includes the initiative of a new human performer that can

leverage the expressive power of generative neural networks onstage.

Hauntology and embodiment in confluyo yo

From the perspective of sonic hauntology (see the section on Experimental AI music 4.5), confluyo

yo is a “summoning” piece, invoking the sonic spectres of both natural and machine-made sounds

through a performative ritual of imitation. As the generative model transforms the saxophonist’s

gestures, it imposes its own temporal and timbral structure on the input sound. This transformation

process becomes a form of material agency – the model “plays back” with its learned distribution,

surfacing sonic patterns that reflect both the input and the underlying sonic corpus. Traces of the

saxophonist’s gestures persist, though they become increasingly spectral, as if haunted by a hidden

musical entity encoded in the model.

The neural tape loop enabled a speculative form of sonic embodiment, where a performer

can construct and inhabit new structures of sound objects through a gestural interaction with the

generative model. Rather than controlling an unconditional process or triggering pre-determined

sonic responses, the performer must develop a musical language that resonates with the model’s

learned sound palette. This can be thought of as a dialogical engagement with an imagined sonic

identity, an uncanny sonic counterpart that transcends traditional notions of instrumental control

93



into an evolving, “haunted” sound ecology.

In an informal conversation taking a break in between recording sessions, Pineda described his

“performance philosophy” at the moment as an attempt to “become” the model’s imagined sonic

identity. He reflects:

“With the horn, dropping in, coming from nothing to something – what does that sound

like, and how can I become that sound? How can I be machine? How can I be this

amorphous thing?”

Weilu Ge’s Cat in loop x Catinblack

Though not my own creative work, another composition worth briefly mentioning for its use of a

neural tape loop is composer Weilu Ge’s Cat in loop x Catinblack (2025). The following are Ge’s

program notes from a performance of Cat in loop x Catinblack:

Cat in loop x Catinblack is a new work for string trio and generative Al music system,

exploring the collective imagination of cat musicality. Through an interactive and re-

cursive process of listening, playing, and performing, we collaboratively brought an

imaginative CAT to life enacting a posthuman subject-in-progress: a relational, em-

bedded, and embodied “we” that moves fluidly across environmental, cognitive, tech-

nological, visual, and sonic realities. Vampnet, developed by Hugo Flores Garcia, is

an AI model trained to re-write parts of an audio input, i.e. “vamp” on it. Fine-tuned

on cat-inspired audio data - mixing real, synthetic and imagined cat gesture sounds,

this model allows us to creatively reinterpret sounds in a cat-like manner both in ex-

pected and unexpected ways. We procedurally adapted the system with creative inputs

from the catinblack ensemble and engineers during a four-session HGNM residency

at Harvard. Throughout the process, a palette of sonic and gestural vocabularies was

co-developed with the ensemble as the piece gradually took shape.

Similar to what Pineda and I found when working on confluyo, Ge’s work with the Catinblack

string trio aimed to use the neural tape loop (vampnet) as a way to mediate a collective embodiment
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process. In the case of Cat in loop, the neural tape loop serves as a medium where the ensemble

collectively imagines a “cat” through a neural tape loop. When discussing the performance and

composition process retroactively, Ge referred to the composition process as the development of a

common language between the performers and the generative model (which embodies the “imagi-

native cat”).

This aim to inhabit and embody the neural tape loop’s imagined sonic identity illustrates a new

kind of instrumental relationship made possible by these generative models. This relationship is

not one that is rooted in fine-grained direct “control” of a sound production mechanism, nor is it

one that offers a detached high-level steering of a grand statistical process, but one that facilitates

the embodiment of a sonic process through the development of a common sonic language.

Design Remark: Miscommunication! Dealing with Communication Mismatches with a Generative

Model

In my practice with unloop, I have observed that this sense of embodiment can be undermined or

even turn into a mild frustration when the model doesn’t respond to the artist’s intended gestures

(e.g., when a user makes a meow sound into a model trained on cat vocalizations and the output

turns into something other than a cat). We experienced this when working in confluyo yo, and Ge

experienced this when working on Catinloop as well.

A musical approach to deal with this issue is to spend time developing a common sonic lan-

guage that is more or less guaranteed to work in a live scenario. For confluyo, I worked out a set

of motifs (seeds) for the performer (Figure 5.4) that were likely to evoke certain specific sounds of

birds and machines from the model. To ensure a successful live performance, Ge spent a session

exploring the boundaries of the model with the performers for Cat in loop.

A technical approach to this issue could be to leverage explicit control signals instead of masked

token prompts, like Chapter 3’s Sketch2Sound [17], or The Rhythm In Anything (TRIA) [132] – a

work led by my labmate and collaborator Patrick O’Reilly.

Yet, adding explicit conditioning signals may lose the surprise that makes the neural tape loop
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feel like a larger-than-life process. In my preliminary experiments attempting to compose music

with Sketch2Sound (a voice-to-sound synthesis system that is more “controllable” than VampNet,

introduced in Chapter 3), I’ve found that a model that “always meows” when you ask it to can feel

sterile, as this erodes the model’s ability to introduce surprise through welcome misinterpretations.

Even after working on Sketch2Sound, I’ve found myself opting to compose with VampNet instead.

An interesting future experiment could be to re-train Sketch2Sound with both control signals and

masked acoustic token modeling capabilities, allowing me to leverage both techniques, further

balancing control and surprise.

Design Remark: Mask Visualizations and Freehand Masking

The operator who played with unloop for the Weilu Ge piece (collaborator Nithya Shikarpur),

along with other more “casual” unloop users, reported having a difficult time getting an intuition for

how the micro-inpainting controls (periodic prompt, compression prompt, etc.) affect the resulting

sound, and how much “generative freedom” the model has at any point in time. I realized that, for

a person who was new to unloop, the micro-inpainting controls made it hard to mentally visualize

what the resulting mask used for micro-inpainting looks like. While I had built the internal mental

image of the masks while developing the VampNet code, another artist playing with unloop could

have no way of having a mental model of the masks being used to transform sound with the model.

In order to alleviate this issue within the tight turnaround time before the performance of Catin-

loop, we came up with a temporary solution: a system for storing different micro-inpainting presets

like “small variation”, “timbre transfer” or a “large stuctural variation”.

A better, longer term design suggestion for people working with masked acoustic token models

for musicmaking would be to build in a mask visualizer into the interface that displays the acoustic

token mask (or a small section of it) as the user adjusts the controls for the micro-inpainting con-

trols. The resulting mask could be overlaid on top of the waveform for the loop, in order to know

exactly which sections of the audio buffer are getting masked out, and which ones are being kept.

Another improved approach could be to drop the micro-inpainting knobs, which borrow the
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affordances of knobs and analog synthesizers, along with the notion of a “periodic” and “compres-

sion” prompts, all together. Instead, we can let the artist freely draw their own micro-inpainting

masks on the input token buffer as desired, letting them precisely choose which sounds to re-

generate and which ones to keep intact.

5.4.3 world of mouth: The Voice as the Interface // Generative Time Stretching

world of mouth is an 8-channel fixed media composition built entirely from the gestural interplay

between my own voice and a neural tape loop.

In this piece, vocal gesture was the primary interface for sculpting sound objects and their

phrase structures, using them as input material for a set of neural tape loops trained on Central

American birds, industrial machines, percussion instruments, and other miscellaneous environ-

mental sounds. The goal of world of mouth was to explore the extent to which vocal performance

(through improvised gestures, rhythm, and articulation) could serve as an expressive communica-

tion mechanism between my own musical intentions and a generative sound process.

The form of world of mouth consists of several “sound worlds”, or imagined spatial sonic

ecologies. Each of these is built from a separate improvised recording of vocal gestures, which is

used as the primary source of phrase structure in the composition. The structure of each world is

given by the shaping vocal technique (e.g., beatboxing, tongue clicking, “chewing sounds”, fluttery

vocal chirps, singing, etc.) as well as the neural tape loop’s underlying sound palette, which “bites

back”, imposing its own rhythms and mesostructures into the composed world.

world of mouth was composed with the guidance of Chris Mercer, as part of a composition

class at Northwestern. world of mouth premiered at Experimental Sound Studio 7 February 2024

in Chicago, IL, USA during the first installment of the Chicago Creative Machines 8 series and was

featured at the UNPOP multichannel listening environment at Burning Man 2024 9.

7https://ess.org
8chicagocreativemachines.com
9https://unpopularmusic.camp/
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the voice as the interface

When sound palette fine-tuning, micro-inpainting, and theseus sampling are combined with a

sound artist’s voice as input, the neural tape loop facilitates voice-to-sound transformation. With

this approach, vocal gestures serve not just as sound objects but as gestures that can then be rein-

terpreted through a neural tape loop’s learned distribution. The result is a metamorphic transfor-

mation in which vocal utterances are reshaped into new timbres, rhythms and structures that reflect

the model’s underlying sound palette.

My work with world of mouth emerged from an interest in Trevor Wishart’s work Vox 5, which

is based on creating sound metamorphoses between vocal sounds and non-human sounds through

extended vocal techniques [4]. Wishart writes of his composition: “The primary aural focus of

Vox-5 is a (super)human voice that metamorphoses into many recognizable sonic images, such as

the sounds of crowds, bees, a horse, or bells” [4].

While Wishart had to meticulously select target recordings, precisely align them with a vocal

utterance, and painstakingly perform manual transformations using phase vocoder software, the

neural tape loop substantially simplifies this process. Instead of manually sourcing, aligning, and

interpolating specific sounds, the artist only needs to provide a vocal recording and a target sound

palette. The neural tape loop performs the transformation without a specific target recording or

manual alignment, allowing the user to explore and refine the transformation intuitively through

masked prompts.

world of mouth marks my first project exploring the research idea of using one’s voice as a con-

ditioning signal for a generative model. In retrospect, the compositional and technical experiments

that gave shape to world of mouth led me to explore more controllable ways of synthesizing sound

objects from vocal performances of those sounds. This eventually paved the way for Sketch2Sound

[17] (Chapter 3), a generative modeling system for sound design capable of generating sounds from

sonic imitations and text prompts.
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generative time stretching

An example of the generative time stretching technique can be heard in world of mouth. The

third section of world of mouth (1’35” - 3’38”), was entirely constructed from a single source

recording of sounds made by clicking my tongue. Before this tongue-clicking recording was used

as material for the neural tape loop, it was sped up 2x using playback-rate shifting, resulting in the

fast, clicking pseudo-melody heard at 1’35”.

The source excerpt of tongue-clicking noises was generatively time-stretched at different fac-

tors (3x, 5x, 10x) with different sound palettes (ones trained on “machines“ and “percussion“

sounds). These generative-stretched sounds were then edited, layered and mixed together in a

DAW, resulting in the second section of the piece.

One may hear how the tongue clicks dematerialize into sounds that resemble hand percussion

instruments like bongos and congas at 2:09, industrial machines (like a cash register at 2:33), or

marimbas at 2:41. The aim was to create sounds whose perceptual identity lies between those

of tongue clicks and the training material of the generative model, which have unique aesthetic

qualities whose existence is only possible thanks to the affordances of masked acoustic generative

models, like the “guttural woodblock rolls” that can be heard at 2:18.

Leveraging the (originally un)intended artefacts of time-stretching algorithms as a musical

technique is, of course, not unprecedented in the computer music and sound design traditions:

Paulstretch (created by Paul Nasca) is a time-stretching effect made for extreme time-stretching

of sounds (factors of 5, 10, 20), which employs phase randomization instead of unwrapping to

preserve phase alignment [174]. This technique makes it suitable for these extreme stretching fac-

tors, and introduces artifacts (instead of avoiding them) that give sounds “washed out” aesthetic

qualities. This technique is popular in ambient music and film soundtracks, often used to build

soundscapes and lush, slowly evolving textures.
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Figure 5.5: HARP user interface. HARP integrates into the DAW as an external audio editor,
allowing one to process and transform tracks in the DAW with generative models (like VampNet)
without having to tediously export/upload/process/download/import every audio file one would
like to process.
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Discussion: HARP to the rescue

world of mouth was my first fixed-media composition made with a neural tape loop in a DAW.

Throughout the composition process, the generative model served as the main means of producing

sonic material. I used the DAW to record vocal utterances before transforming them with the

generative model, then processed these utterances with the neural tape loop. I then composed,

arranged, spatialized, and mixed the transformed sonic materials into a full-form composition.

During the early stages of world of mouth, I used a VampNet’s web demo – a Gradio web UI for

processing audio with VampNet – as a means of taking my vocal utterances and transforming them

with VampNet. This workflow was cumbersome – it required me to export my vocal utterances out

of the DAW as separate files, manually upload them to the web, process them with VampNet, then

manually download them and re-import the processed audio back into the DAW before being able

to listen to the new audio in-context and work it into the mix. This became especially annoying

when I wanted to audit small variations on a transformation in the context of the full composition.

While working on world of mouth, I was also (at the moment) the lead developer for a team

working on an application called HARP, an interface for connecting researchers to music producers

by connecting their deep models to an integrated DAW workflow. Before HARP, our lab had al-

ready been playing with the idea of integrating deep models into the DAW before I started working

on world of mouth (see the audacitorch10 project, a development effort that bridged small PyTorch

models with the Audacity DAW, also led by me). However, world of mouth created a personal

need for myself to use my own generative model in the DAW, making me the prototypical HARP

user. This made the need to have a practically viable research outcome more urgent, as I wanted

to something that would make composing this piece possible for me. Having my own input from

a producer’s perspective sped up the development and informed interfaces design choices made

when working in HARP. Conversely, HARP (after several design iterations) greatly sped up my

interactions with a generative model in the DAW, as HARP’s DAW integration meant that I no

longer had to export/upload/process/download/import over and over again.

10https://github.com/TEAMuP-dev/audacitorch

101

https://github.com/TEAMuP-dev/audacitorch


This allowed me to iterate much faster on different ideas for the piece, as I could audit different

kinds of sound palettes/micro-inpainting prompts/vocal gestures without undergoing extra grunt-

work, which made the composition process less frustrating, even when the model’s generations

failed to meet my expectations, as it required little effort to retry, generate and audit a separate idea

or variation.

5.4.4 Token Telephone: Acoustic Token Feedback as a Gradual Process

Figure 5.6: Interface/instructions for token telephone. These were displayed on a computer monitor
next to the microphone participants could use to interact and begin a new token telephone process.

Token Telephone is a quadraphonic interactive sound installation created in collaboration with

sound artist Stephan Moore. In Token Telephone, participants enter a space equipped with a micro-

phone and a quartet of generative sound neural networks, each represented by a loudspeaker. Upon

vocalizing into the microphone, the participants’ utterance is transformed into neural acoustic to-

kens and played back, initiating a game of telephone between the neural networks. Each network

encodes, processes, and reconstructs the sound, distorting the original utterance into new textures

guided by the network’s training data. The newly reconfigured sound is then passed to the next
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network/loudspeaker in a clockwise direction, and the process repeats. The sound produced by the

fourth network is passed back to the first network in the cycle, creating a feedback loop wherein

the original utterance incrementally loses all of its original characteristics and disintegrates into

textures that reflect the inherent biases of the generative models in play. In time, the resonant

properties of the processes are revealed in front of the participant. The name Token Telephone is a

reference to the children’s game of telephone, where a whispered message is passed from person

to person, gradually mutating the original message as small mishearings accumulate. Like Token

Telephone illuminates the gradual formation of hallucinations through the iterative processing and

re-processing of a sound with a generative model, reflecting the biases introduced by the model’s

understanding of sound objects, as well as the data that was provided to it.

Token telephone is a collaboration between sound artist Stephan Moore and me. The work

was exhibited at the NIME 2024 conference in Utrecht, NL. A teaser video for token telephone is

available on YouTube 11.

Token Telephone leverages the theseus sampling (Section 5.2) technique to facilitate this feed-

back generative process. I use a schedule of different micro-inpainting masks to carry out the grad-

ual sound transformation: early iterations of the theseus sampling process use micro-inpainting

masks with fewer mask tokens, preserving more of the input, while later iterations increase the

amount of masking, allowing the model to create larger structural metamorphoses from the input

sound to the model’s underlying resonances.

Conceptually, this piece is inspired by Alvin Lucier’s I Am Sitting in a Room (1969), in which

Lucier records himself speaking into a tape machine, then repeatedly plays back the recording

into a room, re-recording the result onto the same strip of magnetic tape. Over time, the room’s

resonant frequencies become more and more prominent in the recording, until the resonances in

the room become dominant, and the speech is lost in a wash of harmonic tones. Through clever

tape manipulation, Lucier was able to imprint the room itself onto his original utterance, resulting

in one of the most important pieces of process-based experimental music in the 20th century. The

11https://www.youtube.com/watch?v=vEaYoEgtSUo
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Figure 5.7: Token Telephone is a co-creative AI sound installation where participants interact with
a chain of generative AI models, initiating a generative game of telephone. The installation space is
circled by four neural networks, each represented by a loudspeaker. Participants make sounds into
a microphone at the entrance of the installation space. Their sounds are iteratively transformed by
each neural network in a feedback loop, deviating further from the original with every pass. This
iterative process reveals patterns between the input and the training data of the networks, slowly
morphing the rhythms and timbres of human utterances into new and unexpected sound textures.
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work also bears resemblance to sonic hauntologist William Basinski’s The Disintegration Loops

(2002), where the physical decay of a repeating loop of magnetic tape becomes the core musical

process.

While minimalist in structure, Token Telephone does not rely on external control or formal

development. Instead, it reveals its form through the emergent behavior of a generative process,

situated in a feedback loop with a generative agent. This recursive structure also offers a quiet

critique of contemporary generative models: that these systems are not neutral, but shaped by the

data they are trained on. By allowing them to ”speak” for long enough, we hear what they want to

say the most.

Compositional guideline: alternate realities spatialize well

A “spiritual predecessor” to token telephone worth mentioning here is salad bowl, another collab-

oration with Stephan Moore. The premise to salad bowl was similar to that of token telephone:

To begin the interaction, a participant must make a sound into the microphone in front

of them. The neural network then takes the participant’s sound as input and destroys

around 80-90% of it, then attempts to regenerate the original sound — though it knows

very little about the original sound (human speech)! However, it does know a lot about

natural sounds and specific musical styles. This process is repeated a number of times

in a feedback loop and shown to the participant.

Stephan and I exhibited salad bowl at the NeurIPS 2023 Creative AI Workshop in New Or-

leans, LA, USA. Due to limitations encountered at the venue, we had to set up salad bowl as a

headphones-only installation. Out of concern both for creating an appropriate stereo image for the

participants, I decided to allow 2 participants to play with a separate salad bowl at the same time.

Both (completely independent) transformation processes were then played back to both partici-

pants, panned hard left and right in the participants’ headphones.

While salad bowl was generally positively received, I found it to be less effective at exposing

the participant to the gradual transformation process of their voice than I had hoped. A number of
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participants left the installation confused about the installation’s purpose and message, and some

had trouble hearing a pattern between the input and output. In retrospect, mixing two independent

transformation processes into participants’ headphones may have created an overloaded listening

environment for the participant, making it harder for the participants to recognize the pattern trans-

formation process from their voice to the model’s sound palette. Before I could design another

sound installation for VampNet, I had the compositional challenge of finding a way to spatialize a

generative model that creates rich and noisy monophonic textures.

For my next sound installation (token telephone), I decided to retry the concept of an interac-

tive voice-to-sound palette transformation process, this time without the two independent parallel

streams used in salad bowl to create a spatial image. Instead, to spatialize the transformation

process, we can play previous iterations of this same process in different speakers, moving each

iteration down a speaker as new iterations come in, round robin style. These alternate realities

(neighboring generated iterations of a theseus sampling transformation process) tend to sound very

similar, so playing them at the same time from different speakers creates a pseudo-stereo image,

creating the illusion of a single sound-object with a rich stereo image. In regions where two gen-

erative iterations are less similar to each other, this technique can create a contrasting texture on

all channels, which in turn may also create an interesting spatial structure within itself. For NIME

2024, Stephan and I decided to explore this concept in a quadraphonic format, each speaker playing

alternate realities of an infinitely-generating voice transformation process out of each respective

speaker.

The quadraphonic setup created a rich spatial image for participants to experience. A quadri-

lateral of speakers also created an enclosed space where participants could be surrounded by the

generative sound process, which made the piece feel more situated in a participant’s physical space

than salad bowl. Stephan and I put four chairs at the center at the room and let participants sit and

listen to their sounds transform after recording into a microphone.
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5.5 Conclusion

This chapter introduced the neural tape loop, a generative musical meta-instrument embedded in

the lineage of experimental music, tape-based computer music, and human-AI co-creation systems.

Through practice-based research, I have demonstrated that masked acoustic token models, when

situated in a rich musical ecology, afford new embodied and expressive musical techniques that go

beyond the typical consumer-facing use cases envisioned by commercial AI developers.

I discussed four compositions, living // dreaming, confluyo yo, world of mouth, and token tele-

phone, each demonstrating how the neural tape loop techniques introduced above can be used in

compositions, improvisations and sound installations. Rather than perfectly emulating the percep-

tual qualities of an existing human artist or musical style, the neural tape loop instead invites its

players and participants to embody the underlying sonic material contained by a model, creating

a musicmaking interaction where musical meaning emerges through gesture, transformation, and

co-constructed sonic identity.

I described how being engaged in a prolonged creative practice with generative models brought

about accidental discoveries of new techniques for manipulating and spatializing generative sounds,

design guidelines for co-creative AI interfaces, and an interaction philosophy that led to a consid-

erably significant contribution in the field of generative modeling for audio [17].

If you (the reader) are a musician encountering generative modelling systems in depth for the

first time, I hope this chapter has shown that generative models can allow for new, unique and

compelling ways of interacting with sound. If you (the reader) are a researcher working on a co-

creative AI musicmaking system, I hope this work inspires you to not just evaluate your systems by

benchmarking output quality, but to actively engage in a lived musical practice with your system.

Not all generative models are made to function as a commercial endless spigot of “human-

sounding” AI generated slop – which we’ve already seen invasively and slowly seep into our

streaming services [175], alienating our musical communities and weakening the connections

between human musicians and human listeners by replacing musicians with an abundance of
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(de)personalized, algorithmically generated music.
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CHAPTER 6

EN CONCLUSIÓN

This dissertation described work I completed from 2023-2025 across the fields of machine learn-

ing, audio signal processing, and computer music. Throughout this time, I was able to design and

build generative modeling systems that allowed for more controllable and expressive musicmaking

interactions than existing two-stage generative modeling systems. I also composed, performed, and

exhibited new original creative works built primarily using my proposed generative music-making

systems.

Chapter 2 introduced VampNet, a masked acoustic token modeling approach for generating

sound. Before VampNet, acoustic token generation methods relied on an autoregressive modeling

approach, which required one full inference step through the model per timestep, making these

systems slow and unwieldy to use in interactive applications; a user would have to spend a couple

of minutes waiting for the model to process. VampNet sped this process up by an order of mag-

nitude, as VampNet can sample 500-800 acoustic tokens in as little as 36 steps. VampNet, paired

with handcrafted optimizations like torch.compile, can generate 10s of audio in less than 2s

of inference time on a single GPU, making it possible to use a large generative model in a live

performance with a live instrumental performer (Section 5.4.2).

Additionally, autoregressive modeling approaches were (by design) only made for next-token

prediction: performing generative sound transformation operations were off the table: things like

creating a variation of an existing sound, transforming one’s voice to another sound, or transform-

ing the structural properties of one sound to another were off the table. Using the techniques I

introduced in this dissertation (Chapters 2 and 5), we can now use two-stage generative models for

creating variations of a sound, transforming the structure of a sound, transforming one’s voice into

another sound, etc.

Several technical research works followed VampNet, adding the ability to generative individual
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stems conditioned on other stems [70], making generation faster by modeling masked spectrograms

instead of acoustic tokens [131], conditioned on text prompts [57], beatboxing [132], among others.

VampNet made it possible for large generative models like acoustic token generation systems

to be used in live interactive musicking formats like music performance and interactive sound

art installations, as shown in Sections 5.4.2 and 5.4.4, respectively. Before VampNet, generative

models suitable for live performance (like RAVE and ddsp) were restricted to generating short-

context, sound-object level (under 3s) sounds. Thus, these existing models are used either for

timbre transfer or as an immediate sound-producing mechanism (akin to a traditional instrument).

On the other hand, VampNet (and following acoustic token generation systems) now let us leverage

the meso-scale generative properties of two-stage generative models in a live performance setting,

allowing us to create and transform entire musical mesostructures like rhythms, timbral melodies

and musical phrases at interactive speeds.

For a co-creative human-AI interaction, a meso-level generative system can be more “genera-

tive” than a sound-object level system like RAVE, while being more interactive than a macro level

system like Suno, placing it a sweet spot between generativity (agency) and interactivity (control).

VampNet points the way to a future where large generative models are not replacements for the

human creative process, but instead a medium for manipulating sonic materials – a medium pow-

erful enough to let us interact and bend sonic material in unprecedented ways, and also an agentic

medium: a medium where the materials can bite back at you and impose their own properties upon

yours, if left to their own devices.

Chapter 3 introduced Sketch2Sound, a controllable audio generation method for synthesizing

sounds from interpretable, time-varying control signals like loudness, pitch, and spectral centroid

(i.e., brightness) along with text prompts. These capabilities make Sketch2Sound able to create

sounds using vocal imitations as guidance for the temporal morphology of the sound. This is a

novel, controllable, gestural, and expressive way of generating sounds.

Sketch2Sound opens the doors for sound designers and Foley artists to create rich sonic compo-

sitions with “human” performative gestures while still leveraging the rich and timbrally expressive
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power of larger text-to-sound generation models.

I like to think of generative sound models as a “Foley-stage-in-a-box”: a text-to-sound model

is capable of holding hundreds of thousands of sonic materials in it. Before Sketch2Sound, text-to-

sound synthesis was limited to mostly text-only conditioning. This meant samples of these sonic

materials could be easily summoned via text prompts, but they could not be “played” in the same

way a Foley artist plays with their props like musical instruments. Sketch2Sound paved the way

so that Foley artists wanting to experiment with generative modelling systems are now able to use

their voice and sonic imitations as a way to play and perform with and beyond the many sonic

materials captured by the generative sound model.

Sketch2Sound has been announced as an upcoming feature in Adobe Firefly 1 under the name

“Voice-to-sound effects”. At the moment of writing, the Sketch2Sound technology has a U.S.

patent pending.

Most importantly, I’d like to make the following positionality statement regarding foley sound

generation research: much of the existing research in Foley sound generation [176, 177, 178] has

focused on the automation of Foley sound, engendering the research task of “video-guided sound

generation”. This approach sidelines the human, performative nature of the craft of Foley. In

contrast, my work embraces and centers the embodied, gestural process of soundmaking. Rather

than replacing the sound artist, Sketch2Sound creates a new way for sound artists to manipulate

the sound materials they already work with, offering them a medium through which they can

engage creatively and improvisationally via sonic imitations and text guidance. I have no interest

in building tools for the purpose of saving time, money, or automating an artist away from a

project. Quite the opposite, Sketch2Sound is a tool for engaging in the process of soundmaking in

expressive, nuanced, thorough, and most importantly human ways.

Chapters 4 and 5 detail my practice-based research work with two-stage generative models

(specifically, with VampNet, explained in Chapter 2). Chapter 4 provided an overview of practice-

based research in new musical instrument design , as well as went over some helpful background

1https://firefly.adobe.com/
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material on Experimental AI music and a theoretical framework on the different perceptible time

scales of music.

In Chapter 5, I introduced the neural tape loop, a co-creative generative musical meta-instrument

for experimental music and sound art. I detailed four original creative works that show how the

neural tape loop can be deployed in different interactive and non-interactive musicmaking formats

(i.e., sound installation, live performance, fixed multichannel media), within a long-term experi-

mental music practice. I developed new token manipulation techniques for different musical ap-

plications based on the idea of sound transformation via masking and regeneration using a masked

acoustic token model (like VampNet [16]) and a sound artist’s custom sound palette.

I discussed how the process of making these creative works (and engaging in collaborations

with artists) led to through iterations on the design of the system and its accompanying interfaces.

I reflected on how engaging in long-term musical practice with generative modeling can lead to

the discovery of new techniques for playing with these models. I also discussed how sometimes

technical problems may have musical solutions that can be just as satisfying and can also be em-

ployed before engaging in cognitively (and perhaps financially) expensive work aimed at solving

said technical issues.

The neural tape loop contributes not just a new co-creation system and techniques to play with

said system, but it is also the first practice-based research account for a sound artist working with

a large, two-stage generative model, which contains uniquely new capabilities (and thus musical

affordances) like the generation of musical mesostructures and the structural transfer from one

sound distribution to another. The neural tape loop opens a door for more practice-based research

with large generative models, and encourages generative modeling researchers to become the “first

players” of the music models and co-creation systems they make. I encourage these researchers

to follow their own artistic vision2 and that of their collaborators, as musical instruments created

in a hypercapitalist environment with no artistic vision are the thing that leads to the dilution and

commodification of music creation.
2if the researcher feels like they have no artistic vision, I’d encourage them to find a long-term, equally contributing

artistic collaborator, or, alternatively, to search for a different machine learning task altogether.
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Many researchers focus on “bumping up the numbers”, trying to improve the perceived “real-

ness” of full-length generated audio tracks. In the hands of large corporations, this inevitably has

led to systems that automate the production of generic muzak that introduces no artistic value to

our communities but instead waters down3 the existing channels we have created for engaging in

musical community with one another (e.g., YouTube, SoundCloud, streaming services like Spotify

and Deezer).

I’ve been listening to music on YouTube a lot lately. Increasingly, my feed has been contam-

inated with recommendations of music generated by AI artists that pump out new songs daily.

Perhaps the most offensive part of this all is that the marketing and framing of these songs try

to assimilate theses songs into already established musical communities – attempting to fool the

listener into thinking that they’re listening to (for example) reggae music made by reggae artists,

when they’re actually listening to AI reggae music made by an AI hustler who probably manages

a dozen other “AI artists” spanning different musical traditions, each with its own revenue stream.

Instead, we should make instruments to engender new musical movements, rituals, commu-

nities and practices where generative models are one of the musical instruments of choice. Due

to historic and material ties, these communities would be inextricably linked to the already ex-

isting musical practices and communities in computer music. These musical movements need to

reflect and exploit the affordances of these systems (like the idea of “infinite” music processes like

Dadabots’ Relentless Doppelganger4).

I’ve focused on building systems that allow one to interact with the AI medium in new, more

expressive ways. I share Brian Eno’s belief that just like we did with vacuum tube breakup (i.e.

“analog distortion”) and the “crap sound of 8-bit”, we’ll come to love that “neural network sound”

that we find ugly and weird now, as these imperfections are “the excitement of witnessing events

too momentous for the medium assigned to record them”.

I look forward to fostering new ways for us to engage in the beautiful rituals, practices, and

cultures we call music.
3https://newsroom-deezer.com/2025/04/deezer-reveals-18-of-all-new-music-uploaded-to-streaming-is-fully-ai-generated/
4https://www.youtube.com/watch?v=JF2p0Hlg_5U
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